Properties

Label 232.24.0-232.y.1.12
Level $232$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $232$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0

Level structure

$\GL_2(\Z/232\Z)$-generators: $\begin{bmatrix}13&24\\120&225\end{bmatrix}$, $\begin{bmatrix}30&171\\87&130\end{bmatrix}$, $\begin{bmatrix}42&89\\123&148\end{bmatrix}$, $\begin{bmatrix}69&172\\202&135\end{bmatrix}$
Contains $-I$: no $\quad$ (see 232.12.0.y.1 for the level structure with $-I$)
Cyclic 232-isogeny field degree: $60$
Cyclic 232-torsion field degree: $6720$
Full 232-torsion field degree: $43653120$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.12.0-4.c.1.6 $8$ $2$ $2$ $0$ $0$
116.12.0-4.c.1.2 $116$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
232.48.0-232.l.1.6 $232$ $2$ $2$ $0$
232.48.0-232.n.1.8 $232$ $2$ $2$ $0$
232.48.0-232.v.1.4 $232$ $2$ $2$ $0$
232.48.0-232.x.1.8 $232$ $2$ $2$ $0$
232.48.0-232.bm.1.6 $232$ $2$ $2$ $0$
232.48.0-232.bp.1.8 $232$ $2$ $2$ $0$
232.48.0-232.bt.1.6 $232$ $2$ $2$ $0$
232.48.0-232.bu.1.8 $232$ $2$ $2$ $0$