Properties

Label 13.78.3.a.1
Level $13$
Index $78$
Genus $3$
Analytic rank $3$
Cusps $6$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Baran [10.1016/j.jnt.2014.05.017, MR:MR3253304] showed that this curve admits an exceptional isomorphism to the modular curve $X_{\mathrm{sp}}^+(13)$.

Invariants

Level: $13$ $\SL_2$-level: $13$ Newform level: $169$
Index: $78$ $\PSL_2$-index:$78$
Genus: $3 = 1 + \frac{ 78 }{12} - \frac{ 6 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (none of which are rational) Cusp widths $13^{6}$ Cusp orbits $6$
Elliptic points: $6$ of order $2$ and $0$ of order $3$
Analytic rank: $3$
$\Q$-gonality: $3$
$\overline{\Q}$-gonality: $3$
Rational cusps: $0$
Rational CM points: yes $\quad(D =$ $-7,-8,-11,-19,-28,-67,-163$)

Other labels

Cummins and Pauli (CP) label: 13A3
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 13.78.3.1
Sutherland (S) label: 13Nn

Level structure

$\GL_2(\Z/13\Z)$-generators: $\begin{bmatrix}0&12\\11&0\end{bmatrix}$, $\begin{bmatrix}1&8\\2&12\end{bmatrix}$
$\GL_2(\Z/13\Z)$-subgroup: $C_{168}:C_2$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 13-isogeny field degree: $14$
Cyclic 13-torsion field degree: $168$
Full 13-torsion field degree: $336$

Jacobian

Conductor: $13^{6}$
Simple: yes
Squarefree: yes
Decomposition: $3$
Newforms: 169.2.a.b

Models

Canonical model in $\mathbb{P}^{ 2 }$

$ 0 $ $=$ $ - x^{3} z + x^{2} y^{2} + x y^{3} + 2 x y^{2} z + 2 x y z^{2} + 2 x z^{3} + y^{3} z - y z^{3} $
Copy content Toggle raw display

Rational points

This modular curve has 7 rational CM points but no rational cusps or other known rational points. The following are the known rational points on this modular curve (one row per $j$-invariant).

Elliptic curve CM $j$-invariant $j$-heightCanonical model
49.a2 $-7$$-3375$ $= -1 \cdot 3^{3} \cdot 5^{3}$$8.124$$(0:-1:1)$
256.a1 $-8$$8000$ $= 2^{6} \cdot 5^{3}$$8.987$$(0:1:0)$
121.b1 $-11$$-32768$ $= -1 \cdot 2^{15}$$10.397$$(-1:1:0)$
361.a1 $-19$$-884736$ $= -1 \cdot 2^{15} \cdot 3^{3}$$13.693$$(1:0:0)$
49.a1 $-28$$16581375$ $= 3^{3} \cdot 5^{3} \cdot 17^{3}$$16.624$$(0:1:1)$
4489.b1 $-67$$-147197952000$ $= -1 \cdot 2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$$25.715$$(0:0:1)$
26569.a1 $-163$$-262537412640768000$ $= -1 \cdot 2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$$40.109$$(3/2:-3/2:1)$

Maps to other modular curves

$j$-invariant map of degree 78 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{-2323513461112531990107446305456128x^{21}-18335113415020737557188704299999232x^{20}y-496692006692764985852126533884254336xy^{20}-89629989405629157676149588048000y^{21}-78219520097628650234172847670568960x^{20}z-171534015347790011179139151876573696x^{19}yz-4422880159390699840224932940779042816xy^{19}z-494587377427132370521263129595828736y^{20}z-333561447328458914617911407633092608x^{19}z^{2}-238088229569145215777504282023885824x^{18}yz^{2}-19012141396937334722704086755250616736xy^{18}z^{2}-3909272467959980046040697085159349920y^{19}z^{2}-177282310187878206265916875935263296x^{18}z^{3}+300518605601742364252308234107555584x^{17}yz^{3}-58344561867542959715313391724948978496xy^{17}z^{3}-13008058283087489015361106243774316160y^{18}z^{3}+141278691043899920087723759670439520x^{17}z^{4}+187123989415301499255671532187729256x^{16}yz^{4}-147389406607187113611691430755570181296xy^{16}z^{4}-26466947600520277427509651626779871864y^{17}z^{4}-831395903945870067718445916516755048x^{16}z^{5}+65788585084810084840119884620712112x^{15}yz^{5}-162632634978120226778520296965838142528xy^{15}z^{5}-43119619410841126004896611450805787080y^{16}z^{5}-217876745079722850146802407513539939x^{15}z^{6}+114062179328628686191275153284815541x^{14}yz^{6}-128294295293064688078555935374634377294xy^{14}z^{6}+86352296973421633297363771384163012058y^{15}z^{6}+1164561814695480028021514140847115626x^{14}z^{7}-7270249650597624884980120605254550395x^{13}yz^{7}+877083782484484854912398720273695661389xy^{13}z^{7}+217893659458898314669859783204279607768y^{14}z^{7}+13904546582333995137230364504136282924x^{13}z^{8}-22800206580226113613378844922539095783x^{12}yz^{8}+2610193542530409902086106287410829149642xy^{12}z^{8}+920571651797972700830637192076768333051y^{13}z^{8}+22597626053175858576735824705635768724x^{12}z^{9}-63315606008644606876338162020485529849x^{11}yz^{9}+5579522700604964541311908441761693982830xy^{11}z^{9}+1642103081445517980612708854284185140132y^{12}z^{9}+27334478482785271449286151498381857380x^{11}z^{10}-85918386210285802945171169753023455428x^{10}yz^{10}+9624217414870710278029942478135947377680xy^{10}z^{10}+2583203869896836576137352412712253011279y^{11}z^{10}-15138029107667000561149307531469410547x^{10}z^{11}+4856199670719514527126598331400883979x^{9}yz^{11}+7810048535587506078229043940287172011674xy^{9}z^{11}+6049181325751677406252242381779299205183y^{10}z^{11}-154699844346706950361305550052881626866x^{9}z^{12}+149365168292201354585952641627929723523x^{8}yz^{12}+9955116052097214265382209887592785743509xy^{8}z^{12}+6796044054692944890381705389565665980173y^{9}z^{12}+3655505359651946137849081303097151788x^{8}z^{13}-224215851009248310393417737643720208242x^{7}yz^{13}+570231658595032048112841982798597981786xy^{7}z^{13}+13714392146719990642221329097830030943145y^{8}z^{13}+1511987555486014339415177503017893601526x^{7}z^{14}-3941493852566640303654747343782639607213x^{6}yz^{14}-3720206808796651952132710319811305591223xy^{6}z^{14}+9633043952077867761624309261651722495778y^{7}z^{14}+3612323339664173281920065173289068061271x^{6}z^{15}-6783620982399142653219534994116272951616x^{5}yz^{15}-5346670759180844726864688881654535625779xy^{5}z^{15}-34201372537852934041508732501710505111y^{6}z^{15}-4961564899065963814941364132053439007045x^{5}z^{16}+7930310724358849759295058134053003548101x^{4}yz^{16}-38913343755808484309731757069521292658367xy^{4}z^{16}+6853746460190606949454565936395699484664y^{5}z^{16}-10569335951735930671454397712493270778396x^{4}z^{17}+28989190410363637205798232924392600348484x^{3}yz^{17}-15389580243914860185896669165892280159498xy^{3}z^{17}-5934169730917255173078804903669511064184y^{4}z^{17}-7774152631757491372501978914563034138616x^{3}z^{18}-8200953544490131570735940376381580409555x^{2}yz^{18}+7449515000086381620660211761859766226539xy^{2}z^{18}+12353920512806658732367952500182581409655y^{3}z^{18}+6241310924390350241997074811831382917004x^{2}z^{19}-1987273160207436749624151915734713503680xyz^{19}+11559278678000816229684029932983898335543y^{2}z^{19}+24095922439220300610779554427835750610548xz^{20}-12038054179386684462807122608048029698874yz^{20}+597813843102768190422181968482304000z^{21}}{2626222354592253497209841473x^{21}-56093179572800047871290532017x^{20}y+14596543425002713109322650065628xy^{20}-11203748675703644709518698506y^{21}+468056367293055524442303584127x^{20}z-2263494866149023984969592614924x^{19}yz-193545135233842590897101344316936xy^{19}z+14655713857308983691967335288872y^{20}z+3599005360098339907833549002165x^{19}z^{2}-1180832933919691819503139503621x^{18}yz^{2}+994829590037354292022293067954202xy^{18}z^{2}-202589350240195799311140182766424y^{19}z^{2}-17436315644760433026972454884474x^{18}z^{3}+8506621252435941047520979181391x^{17}yz^{3}-1595824605392584942849257217912677xy^{17}z^{3}+1224684419035056509513056279234843y^{18}z^{3}+49923691514449958852531496122237x^{17}z^{4}+13887516762971308055434585536525x^{16}yz^{4}-2583095192167071887001250903510216xy^{16}z^{4}-1376888377925397227606015771575836y^{17}z^{4}-151168736506263815852268171246339x^{16}z^{5}-246854872603246342760127484855453x^{15}yz^{5}+18918847987033065275755688117233732xy^{15}z^{5}-1377646841870431184672546264320051y^{16}z^{5}+575931698802850934793139039054054x^{15}z^{6}+675584631223288078925630700369343x^{14}yz^{6}+9980597268423788497477085231595140xy^{14}z^{6}+34556500789689755328336118957087422y^{15}z^{6}-782138559822275721723625614667976x^{14}z^{7}-3078794149981101688723979760144623x^{13}yz^{7}-74528219430835573194441792318163533xy^{13}z^{7}+20050784166599770482256266906963059y^{14}z^{7}+317872564513691019586189535076803x^{13}z^{8}+5363291423723336475563686429828526x^{12}yz^{8}+26913657136007237138724959873261490xy^{12}z^{8}-153612660971969455154420702812449226y^{13}z^{8}+5367387022383095407096921518919293x^{12}z^{9}-14638462540755043235777445659560271x^{11}yz^{9}+6435529313647613697501252404705986xy^{11}z^{9}+1399866625515041844503983833142947y^{12}z^{9}-7981756185292775543583042633424160x^{11}z^{10}+819386025082808825032799844146100x^{10}yz^{10}-26780788585625582390970050999568512xy^{10}z^{10}+301644274347923696596551025417631156y^{11}z^{10}+36830274286516276793421284834857641x^{10}z^{11}-44572075083713150084362626058555530x^{9}yz^{11}+402653960567705233739831883601710424xy^{9}z^{11}-23380135029636699625949878726166650y^{10}z^{11}-68670623094029568478107490778082654x^{9}z^{12}-4765294644158026909070794886923522x^{8}yz^{12}+1295081398751736918095773196814960171xy^{8}z^{12}-284166869913675476947049133546312997y^{9}z^{12}+285851461270908464214027927913043339x^{8}z^{13}-257374952098474662416353748177595564x^{7}yz^{13}+4792074002271764153530439467058706059xy^{7}z^{13}+1213567284566662381083485220998367801y^{8}z^{13}-737313428548204915528118467906462249x^{7}z^{14}+477196366226504561325701941352894553x^{6}yz^{14}+15018965790385437413997821221723224322xy^{6}z^{14}+4101629646726905615942390164938840641y^{7}z^{14}+1629940435430933570664589037121215553x^{6}z^{15}-123947481788956359807222158577351641x^{5}yz^{15}+36294389747303138985497623757101282662xy^{5}z^{15}+4894308166022338956041318088791048912y^{6}z^{15}-6357265110682919968489886059887570253x^{5}z^{16}+488410483070224249135171292891087546x^{4}yz^{16}+67015889111931010775478951606570090924xy^{4}z^{16}+9110522279247280506750960956401109941y^{5}z^{16}+8344873918429983076129339861983074197x^{4}z^{17}-2662718369154305157356379767892340343x^{3}yz^{17}+132401626850003594967749286245336116736xy^{3}z^{17}+22251479931030867579300700126113502552y^{4}z^{17}-33325857133845498386345015899909685083x^{3}z^{18}-52678381562628902112594374541731022180x^{2}yz^{18}+191294902956943203116720613801267982171xy^{2}z^{18}+36492176028699136023260556750351704319y^{3}z^{18}-26201887132945254931528891487448770760x^{2}z^{19}+169011306605985452716663818061269251218xyz^{19}-28355649853801499353815814280300505116y^{2}z^{19}+99199063337789732267677937485465026110xz^{20}-49599531668727824562558213997117747742yz^{20}-4061291852095660885432577z^{21}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
$X(1)$ $1$ $78$ $78$ $0$ $0$ full Jacobian

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
$X_{\mathrm{ns}}(13)$ $13$ $2$ $2$ $8$ $3$ $2\cdot3$
13.156.8.b.1 $13$ $2$ $2$ $8$ $6$ $2\cdot3$
13.546.24.c.1 $13$ $7$ $7$ $24$ $12$ $2^{3}\cdot3^{5}$
26.156.8.a.1 $26$ $2$ $2$ $8$ $5$ $2\cdot3$
$X_{\mathrm{ns}}^+(26)$ $26$ $2$ $2$ $8$ $8$ $2\cdot3$
26.156.11.a.1 $26$ $2$ $2$ $11$ $3$ $1^{5}\cdot3$
26.156.11.b.1 $26$ $2$ $2$ $11$ $6$ $1^{5}\cdot3$
26.234.13.a.1 $26$ $3$ $3$ $13$ $8$ $1^{4}\cdot3^{2}$
39.156.8.a.1 $39$ $2$ $2$ $8$ $8$ $2\cdot3$
39.156.8.b.1 $39$ $2$ $2$ $8$ $5$ $2\cdot3$
39.234.13.a.1 $39$ $3$ $3$ $13$ $13$ $1^{2}\cdot2\cdot6$
39.312.21.a.1 $39$ $4$ $4$ $21$ $12$ $1^{3}\cdot2^{3}\cdot3^{3}$
52.156.8.a.1 $52$ $2$ $2$ $8$ $8$ $2\cdot3$
52.156.8.b.1 $52$ $2$ $2$ $8$ $5$ $2\cdot3$
52.156.8.c.1 $52$ $2$ $2$ $8$ $5$ $2\cdot3$
52.156.8.d.1 $52$ $2$ $2$ $8$ $8$ $2\cdot3$
52.156.11.a.1 $52$ $2$ $2$ $11$ $3$ $1^{5}\cdot3$
52.156.11.b.1 $52$ $2$ $2$ $11$ $6$ $1^{5}\cdot3$
52.312.21.m.1 $52$ $4$ $4$ $21$ $21$ $1^{3}\cdot2^{3}\cdot3\cdot6$
65.156.8.a.1 $65$ $2$ $2$ $8$ $3$ $2\cdot3$
65.156.8.b.1 $65$ $2$ $2$ $8$ $6$ $2\cdot3$
65.390.29.a.1 $65$ $5$ $5$ $29$ $29$ $1^{2}\cdot2\cdot5^{2}\cdot12$
65.468.31.a.1 $65$ $6$ $6$ $31$ $15$ $1\cdot2^{6}\cdot3^{2}\cdot9$
65.780.57.a.1 $65$ $10$ $10$ $57$ $57$ $1^{3}\cdot2^{7}\cdot3^{2}\cdot5^{2}\cdot9\cdot12$
78.156.8.a.1 $78$ $2$ $2$ $8$ $?$ not computed
78.156.8.b.1 $78$ $2$ $2$ $8$ $?$ not computed
78.156.11.a.1 $78$ $2$ $2$ $11$ $?$ not computed
78.156.11.b.1 $78$ $2$ $2$ $11$ $?$ not computed
91.156.8.a.1 $91$ $2$ $2$ $8$ $?$ not computed
91.156.8.b.1 $91$ $2$ $2$ $8$ $?$ not computed
104.156.8.a.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.b.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.c.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.d.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.e.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.f.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.g.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.8.h.1 $104$ $2$ $2$ $8$ $?$ not computed
104.156.11.a.1 $104$ $2$ $2$ $11$ $?$ not computed
104.156.11.b.1 $104$ $2$ $2$ $11$ $?$ not computed
104.156.11.c.1 $104$ $2$ $2$ $11$ $?$ not computed
104.156.11.d.1 $104$ $2$ $2$ $11$ $?$ not computed
130.156.8.a.1 $130$ $2$ $2$ $8$ $?$ not computed
130.156.8.b.1 $130$ $2$ $2$ $8$ $?$ not computed
130.156.11.a.1 $130$ $2$ $2$ $11$ $?$ not computed
130.156.11.b.1 $130$ $2$ $2$ $11$ $?$ not computed
143.156.8.a.1 $143$ $2$ $2$ $8$ $?$ not computed
143.156.8.b.1 $143$ $2$ $2$ $8$ $?$ not computed
156.156.8.a.1 $156$ $2$ $2$ $8$ $?$ not computed
156.156.8.b.1 $156$ $2$ $2$ $8$ $?$ not computed
156.156.8.c.1 $156$ $2$ $2$ $8$ $?$ not computed
156.156.8.d.1 $156$ $2$ $2$ $8$ $?$ not computed
156.156.11.a.1 $156$ $2$ $2$ $11$ $?$ not computed
156.156.11.b.1 $156$ $2$ $2$ $11$ $?$ not computed
169.1014.81.a.1 $169$ $13$ $13$ $81$ $?$ not computed
$X_{\mathrm{ns}}^+(169)$ $169$ $169$ $169$ $1041$ $?$ not computed
182.156.8.a.1 $182$ $2$ $2$ $8$ $?$ not computed
182.156.8.b.1 $182$ $2$ $2$ $8$ $?$ not computed
182.156.11.a.1 $182$ $2$ $2$ $11$ $?$ not computed
182.156.11.b.1 $182$ $2$ $2$ $11$ $?$ not computed
195.156.8.a.1 $195$ $2$ $2$ $8$ $?$ not computed
195.156.8.b.1 $195$ $2$ $2$ $8$ $?$ not computed
221.156.8.a.1 $221$ $2$ $2$ $8$ $?$ not computed
221.156.8.b.1 $221$ $2$ $2$ $8$ $?$ not computed
247.156.8.a.1 $247$ $2$ $2$ $8$ $?$ not computed
247.156.8.b.1 $247$ $2$ $2$ $8$ $?$ not computed
260.156.8.a.1 $260$ $2$ $2$ $8$ $?$ not computed
260.156.8.b.1 $260$ $2$ $2$ $8$ $?$ not computed
260.156.8.c.1 $260$ $2$ $2$ $8$ $?$ not computed
260.156.8.d.1 $260$ $2$ $2$ $8$ $?$ not computed
260.156.11.a.1 $260$ $2$ $2$ $11$ $?$ not computed
260.156.11.b.1 $260$ $2$ $2$ $11$ $?$ not computed
273.156.8.a.1 $273$ $2$ $2$ $8$ $?$ not computed
273.156.8.b.1 $273$ $2$ $2$ $8$ $?$ not computed
286.156.8.a.1 $286$ $2$ $2$ $8$ $?$ not computed
286.156.8.b.1 $286$ $2$ $2$ $8$ $?$ not computed
286.156.11.a.1 $286$ $2$ $2$ $11$ $?$ not computed
286.156.11.b.1 $286$ $2$ $2$ $11$ $?$ not computed
299.156.8.a.1 $299$ $2$ $2$ $8$ $?$ not computed
299.156.8.b.1 $299$ $2$ $2$ $8$ $?$ not computed
312.156.8.a.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.b.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.c.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.d.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.e.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.f.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.g.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.8.h.1 $312$ $2$ $2$ $8$ $?$ not computed
312.156.11.a.1 $312$ $2$ $2$ $11$ $?$ not computed
312.156.11.b.1 $312$ $2$ $2$ $11$ $?$ not computed
312.156.11.c.1 $312$ $2$ $2$ $11$ $?$ not computed
312.156.11.d.1 $312$ $2$ $2$ $11$ $?$ not computed