Properties

Label 12.12.0.p.1
Level $12$
Index $12$
Genus $0$
Analytic rank $0$
Cusps $2$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $12$ $\SL_2$-level: $6$
Index: $12$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 4 }{4} - \frac{ 0 }{3} - \frac{ 2 }{2}$
Cusps: $2$ (all of which are rational) Cusp widths $6^{2}$ Cusp orbits $1^{2}$
Elliptic points: $4$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: yes $\quad(D =$ $-8$)

Other labels

Cummins and Pauli (CP) label: 6E0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 12.12.0.6

Level structure

$\GL_2(\Z/12\Z)$-generators: $\begin{bmatrix}0&11\\1&0\end{bmatrix}$, $\begin{bmatrix}0&11\\7&9\end{bmatrix}$, $\begin{bmatrix}7&3\\3&2\end{bmatrix}$
$\GL_2(\Z/12\Z)$-subgroup: $C_2^2:\GL(2,\mathbb{Z}/4)$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 12-isogeny field degree: $12$
Cyclic 12-torsion field degree: $48$
Full 12-torsion field degree: $384$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 11 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{3^3}{2^6}\cdot\frac{(3x+y)^{12}(x^{2}-12y^{2})^{3}(x^{2}+4y^{2})^{3}}{y^{6}x^{6}(3x+y)^{12}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_{\mathrm{sp}}^+(3)$ $3$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
12.24.1.a.1 $12$ $2$ $2$ $1$
12.24.1.b.1 $12$ $2$ $2$ $1$
12.24.1.d.1 $12$ $2$ $2$ $1$
12.24.1.e.1 $12$ $2$ $2$ $1$
12.36.0.d.1 $12$ $3$ $3$ $0$
12.48.1.q.1 $12$ $4$ $4$ $1$
24.24.1.cb.1 $24$ $2$ $2$ $1$
24.24.1.ce.1 $24$ $2$ $2$ $1$
24.24.1.ck.1 $24$ $2$ $2$ $1$
24.24.1.cq.1 $24$ $2$ $2$ $1$
36.36.0.c.1 $36$ $3$ $3$ $0$
36.36.1.c.1 $36$ $3$ $3$ $1$
36.36.1.d.1 $36$ $3$ $3$ $1$
60.24.1.bi.1 $60$ $2$ $2$ $1$
60.24.1.bj.1 $60$ $2$ $2$ $1$
60.24.1.bl.1 $60$ $2$ $2$ $1$
60.24.1.bm.1 $60$ $2$ $2$ $1$
60.60.4.cp.1 $60$ $5$ $5$ $4$
60.72.3.bct.1 $60$ $6$ $6$ $3$
60.120.7.lz.1 $60$ $10$ $10$ $7$
84.24.1.q.1 $84$ $2$ $2$ $1$
84.24.1.r.1 $84$ $2$ $2$ $1$
84.24.1.t.1 $84$ $2$ $2$ $1$
84.24.1.u.1 $84$ $2$ $2$ $1$
84.96.7.bx.1 $84$ $8$ $8$ $7$
84.252.14.b.1 $84$ $21$ $21$ $14$
84.336.21.lp.1 $84$ $28$ $28$ $21$
120.24.1.oc.1 $120$ $2$ $2$ $1$
120.24.1.of.1 $120$ $2$ $2$ $1$
120.24.1.oo.1 $120$ $2$ $2$ $1$
120.24.1.or.1 $120$ $2$ $2$ $1$
132.24.1.q.1 $132$ $2$ $2$ $1$
132.24.1.r.1 $132$ $2$ $2$ $1$
132.24.1.t.1 $132$ $2$ $2$ $1$
132.24.1.u.1 $132$ $2$ $2$ $1$
132.144.11.bx.1 $132$ $12$ $12$ $11$
156.24.1.q.1 $156$ $2$ $2$ $1$
156.24.1.r.1 $156$ $2$ $2$ $1$
156.24.1.t.1 $156$ $2$ $2$ $1$
156.24.1.u.1 $156$ $2$ $2$ $1$
156.168.11.gv.1 $156$ $14$ $14$ $11$
168.24.1.lh.1 $168$ $2$ $2$ $1$
168.24.1.lk.1 $168$ $2$ $2$ $1$
168.24.1.lt.1 $168$ $2$ $2$ $1$
168.24.1.lw.1 $168$ $2$ $2$ $1$
204.24.1.q.1 $204$ $2$ $2$ $1$
204.24.1.r.1 $204$ $2$ $2$ $1$
204.24.1.t.1 $204$ $2$ $2$ $1$
204.24.1.u.1 $204$ $2$ $2$ $1$
204.216.15.fb.1 $204$ $18$ $18$ $15$
228.24.1.q.1 $228$ $2$ $2$ $1$
228.24.1.r.1 $228$ $2$ $2$ $1$
228.24.1.t.1 $228$ $2$ $2$ $1$
228.24.1.u.1 $228$ $2$ $2$ $1$
228.240.19.bx.1 $228$ $20$ $20$ $19$
264.24.1.li.1 $264$ $2$ $2$ $1$
264.24.1.ll.1 $264$ $2$ $2$ $1$
264.24.1.lu.1 $264$ $2$ $2$ $1$
264.24.1.lx.1 $264$ $2$ $2$ $1$
276.24.1.q.1 $276$ $2$ $2$ $1$
276.24.1.r.1 $276$ $2$ $2$ $1$
276.24.1.t.1 $276$ $2$ $2$ $1$
276.24.1.u.1 $276$ $2$ $2$ $1$
276.288.23.bx.1 $276$ $24$ $24$ $23$
312.24.1.li.1 $312$ $2$ $2$ $1$
312.24.1.ll.1 $312$ $2$ $2$ $1$
312.24.1.lu.1 $312$ $2$ $2$ $1$
312.24.1.lx.1 $312$ $2$ $2$ $1$