Properties

Label 4-826e2-1.1-c1e2-0-5
Degree $4$
Conductor $682276$
Sign $1$
Analytic cond. $43.5025$
Root an. cond. $2.56819$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 3·7-s + 4·8-s − 5·9-s + 4·11-s + 6·14-s + 5·16-s − 10·18-s + 8·22-s + 8·23-s − 9·25-s + 9·28-s − 10·29-s + 6·32-s − 15·36-s + 16·37-s − 12·43-s + 12·44-s + 16·46-s + 2·49-s − 18·50-s + 18·53-s + 12·56-s − 20·58-s − 15·63-s + 7·64-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.13·7-s + 1.41·8-s − 5/3·9-s + 1.20·11-s + 1.60·14-s + 5/4·16-s − 2.35·18-s + 1.70·22-s + 1.66·23-s − 9/5·25-s + 1.70·28-s − 1.85·29-s + 1.06·32-s − 5/2·36-s + 2.63·37-s − 1.82·43-s + 1.80·44-s + 2.35·46-s + 2/7·49-s − 2.54·50-s + 2.47·53-s + 1.60·56-s − 2.62·58-s − 1.88·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 682276 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 682276 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(682276\)    =    \(2^{2} \cdot 7^{2} \cdot 59^{2}\)
Sign: $1$
Analytic conductor: \(43.5025\)
Root analytic conductor: \(2.56819\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 682276,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.617569180\)
\(L(\frac12)\) \(\approx\) \(5.617569180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
7$C_2$ \( 1 - 3 T + p T^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.100739732859243393235378198816, −7.930773369176095076170936294898, −7.41975723154921074110230580004, −6.65689015211437814822672486144, −6.58991316168606108179381364137, −5.79238330344911727414565852445, −5.41402537759776928895054430772, −5.39147725414145413474639977518, −4.47276228746620805823938592200, −4.21512786792769606388683659164, −3.51468966459571199068798050891, −3.21495940610495225950895712644, −2.28806177222573667375688542518, −2.00911148220963626129181188337, −0.972858414952871064935415373909, 0.972858414952871064935415373909, 2.00911148220963626129181188337, 2.28806177222573667375688542518, 3.21495940610495225950895712644, 3.51468966459571199068798050891, 4.21512786792769606388683659164, 4.47276228746620805823938592200, 5.39147725414145413474639977518, 5.41402537759776928895054430772, 5.79238330344911727414565852445, 6.58991316168606108179381364137, 6.65689015211437814822672486144, 7.41975723154921074110230580004, 7.930773369176095076170936294898, 8.100739732859243393235378198816

Graph of the $Z$-function along the critical line