Properties

Label 4-1958e2-1.1-c1e2-0-2
Degree $4$
Conductor $3833764$
Sign $1$
Analytic cond. $244.444$
Root an. cond. $3.95407$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4-s + 6·5-s − 3·9-s − 6·11-s + 2·12-s + 12·15-s + 16-s + 6·20-s − 6·23-s + 17·25-s − 14·27-s + 10·31-s − 12·33-s − 3·36-s − 20·37-s − 6·44-s − 18·45-s + 24·47-s + 2·48-s + 2·49-s + 18·53-s − 36·55-s + 24·59-s + 12·60-s + 64-s − 8·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/2·4-s + 2.68·5-s − 9-s − 1.80·11-s + 0.577·12-s + 3.09·15-s + 1/4·16-s + 1.34·20-s − 1.25·23-s + 17/5·25-s − 2.69·27-s + 1.79·31-s − 2.08·33-s − 1/2·36-s − 3.28·37-s − 0.904·44-s − 2.68·45-s + 3.50·47-s + 0.288·48-s + 2/7·49-s + 2.47·53-s − 4.85·55-s + 3.12·59-s + 1.54·60-s + 1/8·64-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3833764 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3833764 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3833764\)    =    \(2^{2} \cdot 11^{2} \cdot 89^{2}\)
Sign: $1$
Analytic conductor: \(244.444\)
Root analytic conductor: \(3.95407\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3833764,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.325723881\)
\(L(\frac12)\) \(\approx\) \(5.325723881\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + 6 T + p T^{2} \)
89$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36410689745433254804873728837, −7.14291882547162255627816684909, −6.54762216250182029125237453136, −5.94744023022306454130283790935, −5.75671469286390333326325976946, −5.48197881161062206485371067956, −5.35465835358337466615572727135, −4.57510660708520700229807955350, −3.79572593468297191488661918640, −3.31534392384618004485979133214, −2.61647407804135209006919461904, −2.51994269176562419526281033451, −2.11801128984211370773581265243, −1.88938183756548545374913634243, −0.69686121807223499961036044669, 0.69686121807223499961036044669, 1.88938183756548545374913634243, 2.11801128984211370773581265243, 2.51994269176562419526281033451, 2.61647407804135209006919461904, 3.31534392384618004485979133214, 3.79572593468297191488661918640, 4.57510660708520700229807955350, 5.35465835358337466615572727135, 5.48197881161062206485371067956, 5.75671469286390333326325976946, 5.94744023022306454130283790935, 6.54762216250182029125237453136, 7.14291882547162255627816684909, 7.36410689745433254804873728837

Graph of the $Z$-function along the critical line