Properties

Label 8-60e8-1.1-c2e4-0-30
Degree $8$
Conductor $1.680\times 10^{14}$
Sign $1$
Analytic cond. $9.25870\times 10^{7}$
Root an. cond. $9.90418$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 46·49-s + 188·61-s + 572·109-s + 484·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 674·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯
L(s)  = 1  − 0.938·49-s + 3.08·61-s + 5.24·109-s + 4·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.98·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + 0.00436·229-s + 0.00429·233-s + 0.00418·239-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(9.25870\times 10^{7}\)
Root analytic conductor: \(9.90418\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(10.26024534\)
\(L(\frac12)\) \(\approx\) \(10.26024534\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 23 T^{2} + p^{4} T^{4} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
13$C_2^2$ \( ( 1 - 337 T^{2} + p^{4} T^{4} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
19$C_2$ \( ( 1 - 37 T + p^{2} T^{2} )^{2}( 1 + 37 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
29$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
31$C_2$ \( ( 1 - 13 T + p^{2} T^{2} )^{2}( 1 + 13 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( ( 1 - 2062 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 23 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
61$C_2$ \( ( 1 - 47 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 2903 T^{2} + p^{4} T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2^2$ \( ( 1 - 8542 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 142 T + p^{2} T^{2} )^{2}( 1 + 142 T + p^{2} T^{2} )^{2} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
89$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 9743 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.93264008216315846298032665080, −5.58581876835847300197025333982, −5.37034308470402612240572814921, −5.34279244182902997116391009543, −5.19923361312179000351890706407, −4.80209450204865659604483186696, −4.54782324798827374827793554097, −4.50190454019373494713178724456, −4.42169944543401636796727770089, −3.85818987536826226159211079341, −3.83855003710016890742890404865, −3.67373528840387712021319033707, −3.45937257096749890330774416533, −2.98118056872602056156038347155, −2.93961829626645716909146666465, −2.81698979389014605247850474303, −2.55558096148661373383515368903, −1.96069696144736408815556682747, −1.82372337993988820668382183030, −1.78370164505753768942937435632, −1.74305719408826898509786758987, −0.904321006735203733279905055684, −0.67128455473596337982465690793, −0.60584884637264698805156582401, −0.43962552538262555995752402170, 0.43962552538262555995752402170, 0.60584884637264698805156582401, 0.67128455473596337982465690793, 0.904321006735203733279905055684, 1.74305719408826898509786758987, 1.78370164505753768942937435632, 1.82372337993988820668382183030, 1.96069696144736408815556682747, 2.55558096148661373383515368903, 2.81698979389014605247850474303, 2.93961829626645716909146666465, 2.98118056872602056156038347155, 3.45937257096749890330774416533, 3.67373528840387712021319033707, 3.83855003710016890742890404865, 3.85818987536826226159211079341, 4.42169944543401636796727770089, 4.50190454019373494713178724456, 4.54782324798827374827793554097, 4.80209450204865659604483186696, 5.19923361312179000351890706407, 5.34279244182902997116391009543, 5.37034308470402612240572814921, 5.58581876835847300197025333982, 5.93264008216315846298032665080

Graph of the $Z$-function along the critical line