Properties

Label 8-60e4-1.1-c7e4-0-1
Degree $8$
Conductor $12960000$
Sign $1$
Analytic cond. $123414.$
Root an. cond. $4.32933$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·4-s + 4.03e3·9-s + 4.91e4·16-s − 1.56e5·25-s − 1.03e6·36-s + 2.95e6·49-s + 8.26e6·61-s − 8.38e6·64-s + 1.15e7·81-s + 4.00e7·100-s − 1.85e7·109-s − 7.79e7·121-s + 127-s + 131-s + 137-s + 139-s + 1.98e8·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.50e8·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 2·4-s + 1.84·9-s + 3·16-s − 2·25-s − 3.69·36-s + 3.58·49-s + 4.66·61-s − 4·64-s + 2.40·81-s + 4·100-s − 1.37·109-s − 4·121-s + 5.53·144-s + 4·169-s − 7.17·196-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+7/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(123414.\)
Root analytic conductor: \(4.32933\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 12960000,\ (\ :7/2, 7/2, 7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.749858607\)
\(L(\frac12)\) \(\approx\) \(2.749858607\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{7} T^{2} )^{2} \)
3$C_2^2$ \( 1 - 4036 T^{2} + p^{14} T^{4} \)
5$C_2$ \( ( 1 + p^{7} T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 1477724 T^{2} + p^{14} T^{4} )^{2} \)
11$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
13$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
17$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
19$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 3270361204 T^{2} + p^{14} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 220254 T + p^{7} T^{2} )^{2}( 1 + 220254 T + p^{7} T^{2} )^{2} \)
31$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
37$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
41$C_2$ \( ( 1 - 705588 T + p^{7} T^{2} )^{2}( 1 + 705588 T + p^{7} T^{2} )^{2} \)
43$C_2^2$ \( ( 1 - 524273282996 T^{2} + p^{14} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 297461652764 T^{2} + p^{14} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
59$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
61$C_2$ \( ( 1 - 2066408 T + p^{7} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 10467333640396 T^{2} + p^{14} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
73$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
79$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 10105170602764 T^{2} + p^{14} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 10220106 T + p^{7} T^{2} )^{2}( 1 + 10220106 T + p^{7} T^{2} )^{2} \)
97$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.762615568829751535217410543569, −9.257319360515262595497156251092, −9.255696093440928222501617973445, −8.789533115045221305519843394940, −8.460284837091223940465175871765, −8.107838655492538424930106435591, −7.81493250106482919053498049129, −7.55690148324239126632176760599, −7.04207387441168133418402236252, −6.94394630474042811204268409224, −6.32846748091430707971644625287, −5.88291422092854531676122463242, −5.48573836832308187877161909341, −5.21106089385872405784497876946, −4.96975545281064945655345432793, −4.24486096157320172886543790177, −3.99063436843774772533892647281, −3.95165573606613311772468015633, −3.67349514611112678631746563594, −2.76162451783824818017427087424, −2.25440346679169746536244799719, −1.68758322008302963654149323110, −1.15412351157139972087494010303, −0.70445189857397091920354722993, −0.41297726795358583491232952022, 0.41297726795358583491232952022, 0.70445189857397091920354722993, 1.15412351157139972087494010303, 1.68758322008302963654149323110, 2.25440346679169746536244799719, 2.76162451783824818017427087424, 3.67349514611112678631746563594, 3.95165573606613311772468015633, 3.99063436843774772533892647281, 4.24486096157320172886543790177, 4.96975545281064945655345432793, 5.21106089385872405784497876946, 5.48573836832308187877161909341, 5.88291422092854531676122463242, 6.32846748091430707971644625287, 6.94394630474042811204268409224, 7.04207387441168133418402236252, 7.55690148324239126632176760599, 7.81493250106482919053498049129, 8.107838655492538424930106435591, 8.460284837091223940465175871765, 8.789533115045221305519843394940, 9.255696093440928222501617973445, 9.257319360515262595497156251092, 9.762615568829751535217410543569

Graph of the $Z$-function along the critical line