Properties

Label 8-175e4-1.1-c9e4-0-1
Degree $8$
Conductor $937890625$
Sign $1$
Analytic cond. $6.59936\times 10^{7}$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.64e3·4-s + 2.83e4·9-s + 7.06e4·11-s + 1.50e6·16-s + 1.85e6·19-s + 2.00e7·29-s + 4.93e6·31-s + 4.65e7·36-s − 3.82e7·41-s + 1.16e8·44-s − 1.15e7·49-s + 1.41e7·59-s + 8.86e7·61-s + 9.51e8·64-s + 4.12e8·71-s + 3.04e9·76-s − 9.37e8·79-s − 2.65e5·81-s − 1.27e9·89-s + 2.00e9·99-s + 3.12e8·101-s − 2.92e9·109-s + 3.28e10·116-s − 2.04e9·121-s + 8.11e9·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 3.21·4-s + 1.43·9-s + 1.45·11-s + 5.75·16-s + 3.25·19-s + 5.25·29-s + 0.959·31-s + 4.62·36-s − 2.11·41-s + 4.67·44-s − 2/7·49-s + 0.151·59-s + 0.819·61-s + 7.08·64-s + 1.92·71-s + 10.4·76-s − 2.70·79-s − 0.000685·81-s − 2.14·89-s + 2.09·99-s + 0.298·101-s − 1.98·109-s + 16.8·116-s − 0.866·121-s + 3.08·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(6.59936\times 10^{7}\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{4} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(62.49828731\)
\(L(\frac12)\) \(\approx\) \(62.49828731\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_2$ \( ( 1 + p^{8} T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - 411 p^{2} T^{2} + 18641 p^{6} T^{4} - 411 p^{20} T^{6} + p^{36} T^{8} \)
3$D_4\times C_2$ \( 1 - 28328 T^{2} + 89193454 p^{2} T^{4} - 28328 p^{18} T^{6} + p^{36} T^{8} \)
11$D_{4}$ \( ( 1 - 35316 T + 2892681078 T^{2} - 35316 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 + 3786168544 T^{2} + \)\(21\!\cdots\!42\)\( T^{4} + 3786168544 p^{18} T^{6} + p^{36} T^{8} \)
17$D_4\times C_2$ \( 1 - 332444725052 T^{2} + \)\(52\!\cdots\!94\)\( T^{4} - 332444725052 p^{18} T^{6} + p^{36} T^{8} \)
19$D_{4}$ \( ( 1 - 925426 T + 858791487510 T^{2} - 925426 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 6341900496476 T^{2} + \)\(16\!\cdots\!54\)\( T^{4} - 6341900496476 p^{18} T^{6} + p^{36} T^{8} \)
29$D_{4}$ \( ( 1 - 10003584 T + 52302031706070 T^{2} - 10003584 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 2467260 T + 49371575832542 T^{2} - 2467260 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 23744441004556 T^{2} + \)\(22\!\cdots\!42\)\( T^{4} - 23744441004556 p^{18} T^{6} + p^{36} T^{8} \)
41$D_{4}$ \( ( 1 + 19103448 T + 602984827739166 T^{2} + 19103448 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 1577937637342748 T^{2} + \)\(11\!\cdots\!74\)\( T^{4} - 1577937637342748 p^{18} T^{6} + p^{36} T^{8} \)
47$D_4\times C_2$ \( 1 - 686469728593004 T^{2} + \)\(12\!\cdots\!82\)\( T^{4} - 686469728593004 p^{18} T^{6} + p^{36} T^{8} \)
53$D_4\times C_2$ \( 1 - 3201641364617996 T^{2} + \)\(11\!\cdots\!74\)\( T^{4} - 3201641364617996 p^{18} T^{6} + p^{36} T^{8} \)
59$D_{4}$ \( ( 1 - 7069218 T + 16866494212382134 T^{2} - 7069218 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 44316386 T + 21654336818123658 T^{2} - 44316386 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 60507234625606124 T^{2} + \)\(18\!\cdots\!94\)\( T^{4} - 60507234625606124 p^{18} T^{6} + p^{36} T^{8} \)
71$D_{4}$ \( ( 1 - 206493816 T + 58491352612128526 T^{2} - 206493816 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 107795011437047164 T^{2} + \)\(94\!\cdots\!10\)\( T^{4} - 107795011437047164 p^{18} T^{6} + p^{36} T^{8} \)
79$D_{4}$ \( ( 1 + 5930824 p T + 239633073722978334 T^{2} + 5930824 p^{10} T^{3} + p^{18} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 469718746005377480 T^{2} + \)\(10\!\cdots\!18\)\( T^{4} - 469718746005377480 p^{18} T^{6} + p^{36} T^{8} \)
89$D_{4}$ \( ( 1 + 636267396 T + 801539802340191990 T^{2} + 636267396 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 1695363093446047420 T^{2} + \)\(18\!\cdots\!78\)\( T^{4} - 1695363093446047420 p^{18} T^{6} + p^{36} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38982603996987898087019909461, −7.34451281095043262856227203194, −7.09002674633295675996589258171, −6.49698295620486006254348336651, −6.49508902422253670394629381018, −6.47123789748028507547771984811, −6.40262153381981618587910718179, −5.72506861886367600400707774283, −5.31953288064248131773170060835, −5.08211394832851412534305662436, −4.93542519554634253809509005103, −4.36546344319349812303085246847, −4.12230034030685643024698771781, −3.63165174888306594405087308238, −3.47208333792263523525321428621, −2.88234892504873105204645194663, −2.87679974804778238910966833722, −2.53626646369578629719977469627, −2.52998894182471958958777385417, −1.59363714393697117762269165515, −1.45383746661001787042852979093, −1.30696814624160873210565618841, −1.30219106832111753346067448057, −0.77981701218094448146174055694, −0.52673663577914812462444511882, 0.52673663577914812462444511882, 0.77981701218094448146174055694, 1.30219106832111753346067448057, 1.30696814624160873210565618841, 1.45383746661001787042852979093, 1.59363714393697117762269165515, 2.52998894182471958958777385417, 2.53626646369578629719977469627, 2.87679974804778238910966833722, 2.88234892504873105204645194663, 3.47208333792263523525321428621, 3.63165174888306594405087308238, 4.12230034030685643024698771781, 4.36546344319349812303085246847, 4.93542519554634253809509005103, 5.08211394832851412534305662436, 5.31953288064248131773170060835, 5.72506861886367600400707774283, 6.40262153381981618587910718179, 6.47123789748028507547771984811, 6.49508902422253670394629381018, 6.49698295620486006254348336651, 7.09002674633295675996589258171, 7.34451281095043262856227203194, 7.38982603996987898087019909461

Graph of the $Z$-function along the critical line