Properties

Label 8-175e4-1.1-c9e4-0-0
Degree $8$
Conductor $937890625$
Sign $1$
Analytic cond. $6.59936\times 10^{7}$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19·2-s + 18·3-s + 21·4-s + 342·6-s + 9.60e3·7-s + 5.03e3·8-s − 3.65e4·9-s + 8.24e4·11-s + 378·12-s + 7.29e4·13-s + 1.82e5·14-s − 8.43e4·16-s + 3.57e5·17-s − 6.93e5·18-s + 3.00e5·19-s + 1.72e5·21-s + 1.56e6·22-s + 2.34e6·23-s + 9.06e4·24-s + 1.38e6·26-s + 6.36e5·27-s + 2.01e5·28-s − 1.37e6·29-s − 4.59e6·31-s − 4.69e6·32-s + 1.48e6·33-s + 6.79e6·34-s + ⋯
L(s)  = 1  + 0.839·2-s + 0.128·3-s + 0.0410·4-s + 0.107·6-s + 1.51·7-s + 0.434·8-s − 1.85·9-s + 1.69·11-s + 0.00526·12-s + 0.708·13-s + 1.26·14-s − 0.321·16-s + 1.03·17-s − 1.55·18-s + 0.529·19-s + 0.193·21-s + 1.42·22-s + 1.74·23-s + 0.0557·24-s + 0.594·26-s + 0.230·27-s + 0.0620·28-s − 0.360·29-s − 0.892·31-s − 0.790·32-s + 0.217·33-s + 0.871·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(6.59936\times 10^{7}\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{4} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(27.73026527\)
\(L(\frac12)\) \(\approx\) \(27.73026527\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_1$ \( ( 1 - p^{4} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 19 T + 85 p^{2} T^{2} - 1387 p^{3} T^{3} + 11991 p^{5} T^{4} - 1387 p^{12} T^{5} + 85 p^{20} T^{6} - 19 p^{27} T^{7} + p^{36} T^{8} \)
3$C_2 \wr S_4$ \( 1 - 2 p^{2} T + 4093 p^{2} T^{2} - 24154 p^{4} T^{3} + 11605708 p^{4} T^{4} - 24154 p^{13} T^{5} + 4093 p^{20} T^{6} - 2 p^{29} T^{7} + p^{36} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 82438 T + 8266219573 T^{2} - 478792229404886 T^{3} + 28732371262031407500 T^{4} - 478792229404886 p^{9} T^{5} + 8266219573 p^{18} T^{6} - 82438 p^{27} T^{7} + p^{36} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 72962 T + 28727078025 T^{2} - 1965410763776002 T^{3} + \)\(42\!\cdots\!72\)\( T^{4} - 1965410763776002 p^{9} T^{5} + 28727078025 p^{18} T^{6} - 72962 p^{27} T^{7} + p^{36} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 357542 T + 468292069057 T^{2} - 118264476533781310 T^{3} + \)\(82\!\cdots\!36\)\( T^{4} - 118264476533781310 p^{9} T^{5} + 468292069057 p^{18} T^{6} - 357542 p^{27} T^{7} + p^{36} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 15828 p T + 621418286736 T^{2} - 177926116548096924 T^{3} + \)\(29\!\cdots\!06\)\( T^{4} - 177926116548096924 p^{9} T^{5} + 621418286736 p^{18} T^{6} - 15828 p^{28} T^{7} + p^{36} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 2340836 T + 7030586174368 T^{2} - 11439800875282843060 T^{3} + \)\(19\!\cdots\!46\)\( T^{4} - 11439800875282843060 p^{9} T^{5} + 7030586174368 p^{18} T^{6} - 2340836 p^{27} T^{7} + p^{36} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 1372022 T + 46742390138801 T^{2} + 1810211425259735326 p T^{3} + \)\(96\!\cdots\!16\)\( T^{4} + 1810211425259735326 p^{10} T^{5} + 46742390138801 p^{18} T^{6} + 1372022 p^{27} T^{7} + p^{36} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 4590888 T + 56000638943212 T^{2} + \)\(20\!\cdots\!64\)\( T^{3} + \)\(14\!\cdots\!50\)\( T^{4} + \)\(20\!\cdots\!64\)\( p^{9} T^{5} + 56000638943212 p^{18} T^{6} + 4590888 p^{27} T^{7} + p^{36} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 38868456 T + 975525049444828 T^{2} - \)\(17\!\cdots\!52\)\( T^{3} + \)\(22\!\cdots\!78\)\( T^{4} - \)\(17\!\cdots\!52\)\( p^{9} T^{5} + 975525049444828 p^{18} T^{6} - 38868456 p^{27} T^{7} + p^{36} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 57287084 T + 1879166479908184 T^{2} - \)\(43\!\cdots\!36\)\( T^{3} + \)\(84\!\cdots\!30\)\( T^{4} - \)\(43\!\cdots\!36\)\( p^{9} T^{5} + 1879166479908184 p^{18} T^{6} - 57287084 p^{27} T^{7} + p^{36} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 43403452 T + 1083079781009760 T^{2} - \)\(21\!\cdots\!52\)\( T^{3} + \)\(54\!\cdots\!02\)\( T^{4} - \)\(21\!\cdots\!52\)\( p^{9} T^{5} + 1083079781009760 p^{18} T^{6} - 43403452 p^{27} T^{7} + p^{36} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 91822222 T + 5137103108541341 T^{2} + \)\(19\!\cdots\!82\)\( T^{3} + \)\(68\!\cdots\!04\)\( T^{4} + \)\(19\!\cdots\!82\)\( p^{9} T^{5} + 5137103108541341 p^{18} T^{6} + 91822222 p^{27} T^{7} + p^{36} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 61086884 T + 9515369140509784 T^{2} - \)\(52\!\cdots\!16\)\( T^{3} + \)\(40\!\cdots\!54\)\( T^{4} - \)\(52\!\cdots\!16\)\( p^{9} T^{5} + 9515369140509784 p^{18} T^{6} - 61086884 p^{27} T^{7} + p^{36} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 72569680 T + 15506079620308076 T^{2} - \)\(53\!\cdots\!60\)\( T^{3} + \)\(13\!\cdots\!86\)\( T^{4} - \)\(53\!\cdots\!60\)\( p^{9} T^{5} + 15506079620308076 p^{18} T^{6} - 72569680 p^{27} T^{7} + p^{36} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 225681036 T + 40564239782954584 T^{2} + \)\(44\!\cdots\!64\)\( T^{3} + \)\(52\!\cdots\!70\)\( T^{4} + \)\(44\!\cdots\!64\)\( p^{9} T^{5} + 40564239782954584 p^{18} T^{6} + 225681036 p^{27} T^{7} + p^{36} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 4429720 T + 72492995180634444 T^{2} - \)\(22\!\cdots\!64\)\( T^{3} + \)\(25\!\cdots\!30\)\( T^{4} - \)\(22\!\cdots\!64\)\( p^{9} T^{5} + 72492995180634444 p^{18} T^{6} - 4429720 p^{27} T^{7} + p^{36} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 470468984 T + 190170620017254236 T^{2} + \)\(49\!\cdots\!64\)\( T^{3} + \)\(12\!\cdots\!70\)\( T^{4} + \)\(49\!\cdots\!64\)\( p^{9} T^{5} + 190170620017254236 p^{18} T^{6} + 470468984 p^{27} T^{7} + p^{36} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 168326464 T + 163795153067496204 T^{2} - \)\(18\!\cdots\!36\)\( T^{3} + \)\(12\!\cdots\!34\)\( T^{4} - \)\(18\!\cdots\!36\)\( p^{9} T^{5} + 163795153067496204 p^{18} T^{6} - 168326464 p^{27} T^{7} + p^{36} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 598805646 T + 409167627137545941 T^{2} + \)\(15\!\cdots\!22\)\( T^{3} + \)\(69\!\cdots\!36\)\( T^{4} + \)\(15\!\cdots\!22\)\( p^{9} T^{5} + 409167627137545941 p^{18} T^{6} + 598805646 p^{27} T^{7} + p^{36} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 1159074304 T + 958573764116851484 T^{2} - \)\(57\!\cdots\!36\)\( T^{3} + \)\(28\!\cdots\!34\)\( T^{4} - \)\(57\!\cdots\!36\)\( p^{9} T^{5} + 958573764116851484 p^{18} T^{6} - 1159074304 p^{27} T^{7} + p^{36} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 1380153012 T + 1820467990344974776 T^{2} + \)\(13\!\cdots\!84\)\( T^{3} + \)\(99\!\cdots\!06\)\( T^{4} + \)\(13\!\cdots\!84\)\( p^{9} T^{5} + 1820467990344974776 p^{18} T^{6} + 1380153012 p^{27} T^{7} + p^{36} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 754874082 T + 1211193206499632841 T^{2} + \)\(57\!\cdots\!42\)\( T^{3} + \)\(91\!\cdots\!84\)\( T^{4} + \)\(57\!\cdots\!42\)\( p^{9} T^{5} + 1211193206499632841 p^{18} T^{6} + 754874082 p^{27} T^{7} + p^{36} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53527750543303172057570342893, −7.38018946650672152133804487025, −6.95438724151168819081883316415, −6.93524939871343021581875413327, −6.11788147317629055521105924423, −6.06198103852818360126484246603, −5.95250027471288655595156757906, −5.64944869230360584183032213152, −5.44292064159024103384874868627, −4.88222151639474297399191869467, −4.58723836386416172729847116251, −4.49790858366921913604711649453, −4.38476239878472019190356699827, −3.89238528427160690699820680446, −3.48107956427107009363450967492, −3.35635654021053579136428746667, −2.83946799978824851801680615950, −2.65092723193616052844354755830, −2.38362982793801490439667971665, −1.89980127298872196382795283580, −1.47237556204566460334352609858, −1.15810055803483888309010312828, −1.05411979000439378986929597925, −0.57217395799571378311330705321, −0.49643808897500974144655289916, 0.49643808897500974144655289916, 0.57217395799571378311330705321, 1.05411979000439378986929597925, 1.15810055803483888309010312828, 1.47237556204566460334352609858, 1.89980127298872196382795283580, 2.38362982793801490439667971665, 2.65092723193616052844354755830, 2.83946799978824851801680615950, 3.35635654021053579136428746667, 3.48107956427107009363450967492, 3.89238528427160690699820680446, 4.38476239878472019190356699827, 4.49790858366921913604711649453, 4.58723836386416172729847116251, 4.88222151639474297399191869467, 5.44292064159024103384874868627, 5.64944869230360584183032213152, 5.95250027471288655595156757906, 6.06198103852818360126484246603, 6.11788147317629055521105924423, 6.93524939871343021581875413327, 6.95438724151168819081883316415, 7.38018946650672152133804487025, 7.53527750543303172057570342893

Graph of the $Z$-function along the critical line