Properties

Label 8-175e4-1.1-c4e4-0-3
Degree $8$
Conductor $937890625$
Sign $1$
Analytic cond. $107085.$
Root an. cond. $4.25320$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 52·4-s + 274·9-s + 356·11-s + 1.51e3·16-s − 764·29-s − 1.42e4·36-s − 1.85e4·44-s − 98·49-s − 3.03e4·64-s + 1.78e4·71-s − 2.22e4·79-s + 4.31e4·81-s + 9.75e4·99-s − 4.92e4·109-s + 3.97e4·116-s + 2.06e4·121-s + 127-s + 131-s + 137-s + 139-s + 4.15e5·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.14e5·169-s + ⋯
L(s)  = 1  − 3.25·4-s + 3.38·9-s + 2.94·11-s + 5.92·16-s − 0.908·29-s − 10.9·36-s − 9.56·44-s − 0.0408·49-s − 7.41·64-s + 3.53·71-s − 3.56·79-s + 6.58·81-s + 9.95·99-s − 4.14·109-s + 2.95·116-s + 1.41·121-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 20.0·144-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s + 3.99·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(5-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(107085.\)
Root analytic conductor: \(4.25320\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{4} ,\ ( \ : 2, 2, 2, 2 ),\ 1 )\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.858619626\)
\(L(\frac12)\) \(\approx\) \(1.858619626\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_2^2$ \( 1 + 2 p^{2} T^{2} + p^{8} T^{4} \)
good2$C_2^2$ \( ( 1 + 13 p T^{2} + p^{8} T^{4} )^{2} \)
3$C_2^2$ \( ( 1 - 137 T^{2} + p^{8} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 89 T + p^{4} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 57097 T^{2} + p^{8} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 68183 T^{2} + p^{8} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 212042 T^{2} + p^{8} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 68906 T^{2} + p^{8} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 191 T + p^{4} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 737642 T^{2} + p^{8} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 794 p^{2} T^{2} + p^{8} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 2845078 T^{2} + p^{8} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 6695306 T^{2} + p^{8} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 4941337 T^{2} + p^{8} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 13261538 T^{2} + p^{8} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 11092322 T^{2} + p^{8} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 23947082 T^{2} + p^{8} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 36108866 T^{2} + p^{8} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 4454 T + p^{4} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 18026018 T^{2} + p^{8} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 5561 T + p^{4} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 90956542 T^{2} + p^{8} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 124831082 T^{2} + p^{8} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 91773337 T^{2} + p^{8} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.757295491932914861369857293896, −8.512545804993683661880442588519, −8.169731039020927395243762209300, −7.68571801524337607419092419298, −7.55836283277146200235493668781, −7.39747092358553465036904870529, −6.77954704677749980208412713131, −6.60300056424660057758041764919, −6.53735647500537441695169472276, −6.14389559683088763302086749892, −5.38186072607895411461978962946, −5.21928027558551717417832487207, −5.17673640080607621292351406789, −4.40140020118449282209920252349, −4.35578366080234831855500341990, −4.29050093660580788770182697835, −3.79298568706156423280299952292, −3.71611305188200093592750498106, −3.67762951699722141021849825910, −2.68921841071229965522198422668, −1.82717295568717202683512140379, −1.34548999597018740137104132178, −1.28991936313571238717153188155, −0.931680428209438642526386907378, −0.29477078972629363047125464032, 0.29477078972629363047125464032, 0.931680428209438642526386907378, 1.28991936313571238717153188155, 1.34548999597018740137104132178, 1.82717295568717202683512140379, 2.68921841071229965522198422668, 3.67762951699722141021849825910, 3.71611305188200093592750498106, 3.79298568706156423280299952292, 4.29050093660580788770182697835, 4.35578366080234831855500341990, 4.40140020118449282209920252349, 5.17673640080607621292351406789, 5.21928027558551717417832487207, 5.38186072607895411461978962946, 6.14389559683088763302086749892, 6.53735647500537441695169472276, 6.60300056424660057758041764919, 6.77954704677749980208412713131, 7.39747092358553465036904870529, 7.55836283277146200235493668781, 7.68571801524337607419092419298, 8.169731039020927395243762209300, 8.512545804993683661880442588519, 8.757295491932914861369857293896

Graph of the $Z$-function along the critical line