Properties

Label 8-175e4-1.1-c3e4-0-1
Degree $8$
Conductor $937890625$
Sign $1$
Analytic cond. $11366.2$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 272·11-s + 47·16-s − 2.75e3·71-s − 1.45e3·81-s + 4.09e4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s − 1.27e4·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  − 7.45·11-s + 0.734·16-s − 4.60·71-s − 2·81-s + 30.7·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.000439·173-s − 5.47·176-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + 0.000292·227-s + 0.000288·229-s + 0.000281·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(11366.2\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(0.07680812826\)
\(L(\frac12)\) \(\approx\) \(0.07680812826\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_2^2$ \( 1 + p^{6} T^{4} \)
good2$C_2^3$ \( 1 - 47 T^{4} + p^{12} T^{8} \)
3$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
11$C_2$ \( ( 1 + 68 T + p^{3} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
23$C_2^3$ \( 1 + 220762978 T^{4} + p^{12} T^{8} \)
29$C_2^2$ \( ( 1 - 21222 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
37$C_2^3$ \( 1 + 5108772818 T^{4} + p^{12} T^{8} \)
41$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
43$C_2^3$ \( 1 + 3388378898 T^{4} + p^{12} T^{8} \)
47$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 41794002542 T^{4} + p^{12} T^{8} \)
59$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
61$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
67$C_2^3$ \( 1 - 178008750862 T^{4} + p^{12} T^{8} \)
71$C_2$ \( ( 1 + 688 T + p^{3} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 929378 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.640224288404582557307461277710, −8.370610222134724640929864522863, −8.236570732183097282250342914697, −7.991258178551428809923930705927, −7.74555136436794770677100913647, −7.47173950046536976078516747258, −7.46331836359875042521779652762, −7.11679222730311977311243313570, −6.70394791502920607763606604143, −5.97690562865895347125808793817, −5.62633404211620869393324220050, −5.61080965042280451684357782787, −5.59397943403898716129322363575, −5.09685804934577376440588097949, −4.82373809281802209764620022277, −4.48792791222955230410033907439, −4.31984668525214712392942927160, −3.14210041408009617356806572783, −3.07690261543908491846916128499, −3.05164589508112450238436078938, −2.44898171492519458668750014395, −2.30417444750615180976516682607, −1.72179167152561135456301288526, −0.59044095785827505405162335093, −0.089350533331963175299704238643, 0.089350533331963175299704238643, 0.59044095785827505405162335093, 1.72179167152561135456301288526, 2.30417444750615180976516682607, 2.44898171492519458668750014395, 3.05164589508112450238436078938, 3.07690261543908491846916128499, 3.14210041408009617356806572783, 4.31984668525214712392942927160, 4.48792791222955230410033907439, 4.82373809281802209764620022277, 5.09685804934577376440588097949, 5.59397943403898716129322363575, 5.61080965042280451684357782787, 5.62633404211620869393324220050, 5.97690562865895347125808793817, 6.70394791502920607763606604143, 7.11679222730311977311243313570, 7.46331836359875042521779652762, 7.47173950046536976078516747258, 7.74555136436794770677100913647, 7.991258178551428809923930705927, 8.236570732183097282250342914697, 8.370610222134724640929864522863, 8.640224288404582557307461277710

Graph of the $Z$-function along the critical line