Properties

Label 8-162e4-1.1-c4e4-0-2
Degree $8$
Conductor $688747536$
Sign $1$
Analytic cond. $78638.9$
Root an. cond. $4.09217$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·4-s − 52·7-s − 100·13-s − 1.43e3·19-s − 962·25-s − 416·28-s + 1.48e3·31-s + 7.49e3·37-s + 524·43-s + 5.47e3·49-s − 800·52-s + 2.97e3·61-s − 512·64-s + 8.97e3·67-s + 1.16e3·73-s − 1.14e4·76-s − 1.96e4·79-s + 5.20e3·91-s + 956·97-s − 7.69e3·100-s − 4.27e3·103-s − 1.90e4·109-s − 1.51e4·121-s + 1.18e4·124-s + 127-s + 131-s + 7.44e4·133-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.06·7-s − 0.591·13-s − 3.96·19-s − 1.53·25-s − 0.530·28-s + 1.54·31-s + 5.47·37-s + 0.283·43-s + 2.28·49-s − 0.295·52-s + 0.798·61-s − 1/8·64-s + 1.99·67-s + 0.217·73-s − 1.98·76-s − 3.14·79-s + 0.627·91-s + 0.101·97-s − 0.769·100-s − 0.403·103-s − 1.59·109-s − 1.03·121-s + 0.772·124-s + 6.20e−5·127-s + 5.82e−5·131-s + 4.20·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(5-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(78638.9\)
Root analytic conductor: \(4.09217\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{16} ,\ ( \ : 2, 2, 2, 2 ),\ 1 )\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.4248493097\)
\(L(\frac12)\) \(\approx\) \(0.4248493097\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p^{3} T^{2} + p^{6} T^{4} \)
3 \( 1 \)
good5$C_2^3$ \( 1 + 962 T^{2} + 534819 T^{4} + 962 p^{8} T^{6} + p^{16} T^{8} \)
7$C_2^2$ \( ( 1 + 26 T - 1725 T^{2} + 26 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 15170 T^{2} + 15770019 T^{4} + 15170 p^{8} T^{6} + p^{16} T^{8} \)
13$C_2^2$ \( ( 1 + 50 T - 26061 T^{2} + 50 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 125570 T^{2} + p^{8} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 358 T + p^{4} T^{2} )^{4} \)
23$C_2^3$ \( 1 + 420290 T^{2} + 98332698819 T^{4} + 420290 p^{8} T^{6} + p^{16} T^{8} \)
29$C_2^3$ \( 1 - 666238 T^{2} - 56373340317 T^{4} - 666238 p^{8} T^{6} + p^{16} T^{8} \)
31$C_2^2$ \( ( 1 - 742 T - 372957 T^{2} - 742 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 1874 T + p^{4} T^{2} )^{4} \)
41$C_2^3$ \( 1 - 155710 T^{2} - 7960679625021 T^{4} - 155710 p^{8} T^{6} + p^{16} T^{8} \)
43$C_2^2$ \( ( 1 - 262 T - 3350157 T^{2} - 262 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 6879362 T^{2} + 23514334865283 T^{4} + 6879362 p^{8} T^{6} + p^{16} T^{8} \)
53$C_2^2$ \( ( 1 - 15571010 T^{2} + p^{8} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 20937410 T^{2} + 291544699903779 T^{4} + 20937410 p^{8} T^{6} + p^{16} T^{8} \)
61$C_2^2$ \( ( 1 - 1486 T - 11637645 T^{2} - 1486 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 4486 T - 26925 T^{2} - 4486 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 38122562 T^{2} + p^{8} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 290 T + p^{4} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 9818 T + 57443043 T^{2} + 9818 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 44355074 T^{2} - 284919642593565 T^{4} + 44355074 p^{8} T^{6} + p^{16} T^{8} \)
89$C_2^2$ \( ( 1 - 64012610 T^{2} + p^{8} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 478 T - 88300797 T^{2} - 478 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.445502512821002622391400459250, −8.425154473466798516065946635365, −8.320270396806837551300163945172, −7.972434187511605704640464599994, −7.49205971872912849240911289282, −7.35134665601089930317182040174, −6.96908260316348561630259711577, −6.72070959724513484162987727972, −6.24166446451112551444127057543, −6.07337376885262980019623789023, −6.05177458414300702227362903841, −5.89950873471569240370643600700, −5.17961326965401122912651638149, −4.67722321763150413745803402558, −4.33979985623070319917160291002, −4.32238274303068033218317618698, −3.76493477226421774194291274904, −3.75296069944931287669167627195, −2.62680719890207985809393213174, −2.54327814729763840530801060169, −2.53972040498503361929803434268, −2.09934309160725662668226280035, −1.23807423117716835701704727028, −0.789973166643029950773825230337, −0.12992366597606757807257192283, 0.12992366597606757807257192283, 0.789973166643029950773825230337, 1.23807423117716835701704727028, 2.09934309160725662668226280035, 2.53972040498503361929803434268, 2.54327814729763840530801060169, 2.62680719890207985809393213174, 3.75296069944931287669167627195, 3.76493477226421774194291274904, 4.32238274303068033218317618698, 4.33979985623070319917160291002, 4.67722321763150413745803402558, 5.17961326965401122912651638149, 5.89950873471569240370643600700, 6.05177458414300702227362903841, 6.07337376885262980019623789023, 6.24166446451112551444127057543, 6.72070959724513484162987727972, 6.96908260316348561630259711577, 7.35134665601089930317182040174, 7.49205971872912849240911289282, 7.972434187511605704640464599994, 8.320270396806837551300163945172, 8.425154473466798516065946635365, 8.445502512821002622391400459250

Graph of the $Z$-function along the critical line