Properties

Label 4-93312-1.1-c1e2-0-27
Degree $4$
Conductor $93312$
Sign $1$
Analytic cond. $5.94965$
Root an. cond. $1.56179$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 2·13-s − 8·17-s + 38·25-s − 18·37-s − 5·49-s − 16·53-s − 10·61-s + 16·65-s + 2·73-s − 64·85-s + 24·89-s + 10·97-s − 28·109-s + 24·113-s − 6·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s + ⋯
L(s)  = 1  + 3.57·5-s + 0.554·13-s − 1.94·17-s + 38/5·25-s − 2.95·37-s − 5/7·49-s − 2.19·53-s − 1.28·61-s + 1.98·65-s + 0.234·73-s − 6.94·85-s + 2.54·89-s + 1.01·97-s − 2.68·109-s + 2.25·113-s − 0.545·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(93312\)    =    \(2^{7} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(5.94965\)
Root analytic conductor: \(1.56179\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 93312,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.781173969\)
\(L(\frac12)\) \(\approx\) \(2.781173969\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.397687695952564808383582699781, −9.353481303159343167683292410657, −8.806587663978251937370981617555, −8.539782519934566925988068508340, −7.50312413977084454112831481379, −6.65045650092432229207532369718, −6.44248673632066345518308551587, −6.23424820798207238945321961084, −5.45381403020204823365032144634, −5.10755730919050596352378085939, −4.60013470795046618235360781298, −3.36478379045069074059258347613, −2.61810189422413157391267840739, −1.81832624891237728767312244270, −1.69047687282002906512933211555, 1.69047687282002906512933211555, 1.81832624891237728767312244270, 2.61810189422413157391267840739, 3.36478379045069074059258347613, 4.60013470795046618235360781298, 5.10755730919050596352378085939, 5.45381403020204823365032144634, 6.23424820798207238945321961084, 6.44248673632066345518308551587, 6.65045650092432229207532369718, 7.50312413977084454112831481379, 8.539782519934566925988068508340, 8.806587663978251937370981617555, 9.353481303159343167683292410657, 9.397687695952564808383582699781

Graph of the $Z$-function along the critical line