Properties

Label 4-93312-1.1-c1e2-0-18
Degree $4$
Conductor $93312$
Sign $-1$
Analytic cond. $5.94965$
Root an. cond. $1.56179$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 16-s + 4·19-s − 3·20-s − 3·23-s − 25-s + 3·29-s − 32-s − 4·38-s + 3·40-s − 2·43-s + 3·46-s − 15·47-s − 4·49-s + 50-s + 9·53-s − 3·58-s + 64-s + 67-s + 9·71-s − 14·73-s + 4·76-s − 3·80-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 1/4·16-s + 0.917·19-s − 0.670·20-s − 0.625·23-s − 1/5·25-s + 0.557·29-s − 0.176·32-s − 0.648·38-s + 0.474·40-s − 0.304·43-s + 0.442·46-s − 2.18·47-s − 4/7·49-s + 0.141·50-s + 1.23·53-s − 0.393·58-s + 1/8·64-s + 0.122·67-s + 1.06·71-s − 1.63·73-s + 0.458·76-s − 0.335·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(93312\)    =    \(2^{7} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(5.94965\)
Root analytic conductor: \(1.56179\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 93312,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
good5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 104 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.609029245222558289386495025739, −8.671234007572873596015962542049, −8.341906752583945825236596197607, −7.976681843896829700657710194487, −7.47078170298462966312389980291, −7.06531632154498006005389978897, −6.45668678671408005985928016769, −5.85877624435329572111912165516, −5.15610713357840073950821402514, −4.51935115568100078770355546120, −3.78610675719701428031694726911, −3.35211510701703793642784579063, −2.48351851344506650792229923687, −1.38051238992515136747189719480, 0, 1.38051238992515136747189719480, 2.48351851344506650792229923687, 3.35211510701703793642784579063, 3.78610675719701428031694726911, 4.51935115568100078770355546120, 5.15610713357840073950821402514, 5.85877624435329572111912165516, 6.45668678671408005985928016769, 7.06531632154498006005389978897, 7.47078170298462966312389980291, 7.976681843896829700657710194487, 8.341906752583945825236596197607, 8.671234007572873596015962542049, 9.609029245222558289386495025739

Graph of the $Z$-function along the critical line