Properties

Label 4-5052e2-1.1-c1e2-0-1
Degree $4$
Conductor $25522704$
Sign $1$
Analytic cond. $1627.34$
Root an. cond. $6.35141$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s − 7-s + 3·9-s − 4·11-s + 2·13-s − 4·15-s + 4·19-s − 2·21-s − 2·25-s + 4·27-s − 3·29-s − 19·31-s − 8·33-s + 2·35-s − 16·37-s + 4·39-s + 9·41-s − 6·45-s − 15·47-s − 12·49-s − 5·53-s + 8·55-s + 8·57-s + 7·59-s + 10·61-s − 3·63-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s − 0.377·7-s + 9-s − 1.20·11-s + 0.554·13-s − 1.03·15-s + 0.917·19-s − 0.436·21-s − 2/5·25-s + 0.769·27-s − 0.557·29-s − 3.41·31-s − 1.39·33-s + 0.338·35-s − 2.63·37-s + 0.640·39-s + 1.40·41-s − 0.894·45-s − 2.18·47-s − 1.71·49-s − 0.686·53-s + 1.07·55-s + 1.05·57-s + 0.911·59-s + 1.28·61-s − 0.377·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25522704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25522704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25522704\)    =    \(2^{4} \cdot 3^{2} \cdot 421^{2}\)
Sign: $1$
Analytic conductor: \(1627.34\)
Root analytic conductor: \(6.35141\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 25522704,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
421$C_1$ \( ( 1 + T )^{2} \)
good5$D_{4}$ \( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + 13 T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 3 T + 59 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_4$ \( 1 + 19 T + 151 T^{2} + 19 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_4$ \( 1 - 9 T + 71 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 15 T + 149 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 5 T + 111 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 7 T + 129 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 10 T + 142 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 19 T + 193 T^{2} + 19 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 13 T + 183 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 14 T + 190 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - T + 127 T^{2} - p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 9 T + 175 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 + 27 T + 345 T^{2} + 27 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.074868815740760521241104366755, −7.74352449392757349682853717269, −7.34602084665853768460558291203, −7.22549309020668630959924879901, −6.81049868604162186826559318459, −6.34675938817679873821521313628, −5.82222857628763429083069237453, −5.39629899229291060663021182825, −5.04883518287873073938759349116, −4.89537708164672777682480893805, −4.03756220821848827726373019309, −3.75632177918213904129192165190, −3.42842569397933790886637532429, −3.35663748696204764116191140646, −2.72338192403924548091642364767, −2.10322742605018277074030336953, −1.80871924620936632998895855387, −1.24302435981079440958072077896, 0, 0, 1.24302435981079440958072077896, 1.80871924620936632998895855387, 2.10322742605018277074030336953, 2.72338192403924548091642364767, 3.35663748696204764116191140646, 3.42842569397933790886637532429, 3.75632177918213904129192165190, 4.03756220821848827726373019309, 4.89537708164672777682480893805, 5.04883518287873073938759349116, 5.39629899229291060663021182825, 5.82222857628763429083069237453, 6.34675938817679873821521313628, 6.81049868604162186826559318459, 7.22549309020668630959924879901, 7.34602084665853768460558291203, 7.74352449392757349682853717269, 8.074868815740760521241104366755

Graph of the $Z$-function along the critical line