Properties

Label 4-363e2-1.1-c1e2-0-5
Degree $4$
Conductor $131769$
Sign $-1$
Analytic cond. $8.40170$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·4-s − 2·9-s + 4·12-s + 12·16-s − 25-s + 5·27-s − 10·31-s + 8·36-s + 14·37-s − 12·48-s − 14·49-s − 32·64-s + 26·67-s + 75-s + 81-s + 10·93-s + 34·97-s + 4·100-s − 8·103-s − 20·108-s − 14·111-s + 40·124-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.577·3-s − 2·4-s − 2/3·9-s + 1.15·12-s + 3·16-s − 1/5·25-s + 0.962·27-s − 1.79·31-s + 4/3·36-s + 2.30·37-s − 1.73·48-s − 2·49-s − 4·64-s + 3.17·67-s + 0.115·75-s + 1/9·81-s + 1.03·93-s + 3.45·97-s + 2/5·100-s − 0.788·103-s − 1.92·108-s − 1.32·111-s + 3.59·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(131769\)    =    \(3^{2} \cdot 11^{4}\)
Sign: $-1$
Analytic conductor: \(8.40170\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 131769,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + p T^{2} \)
11 \( 1 \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 13 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.239645513051175281393608873936, −8.487357851440445247270968425966, −8.468596719955261371677845250157, −7.74971489374349908553225834156, −7.37520405553462112512317968814, −6.34583551331242224592183459087, −6.04214609726225978583223790134, −5.46569305050405475214160980267, −4.87628538913627800967773832068, −4.73070320716804110076258258958, −3.66923064750984294129055958828, −3.60577326155639270878357097593, −2.44495639562721598403091577465, −1.06294681607902093882729364169, 0, 1.06294681607902093882729364169, 2.44495639562721598403091577465, 3.60577326155639270878357097593, 3.66923064750984294129055958828, 4.73070320716804110076258258958, 4.87628538913627800967773832068, 5.46569305050405475214160980267, 6.04214609726225978583223790134, 6.34583551331242224592183459087, 7.37520405553462112512317968814, 7.74971489374349908553225834156, 8.468596719955261371677845250157, 8.487357851440445247270968425966, 9.239645513051175281393608873936

Graph of the $Z$-function along the critical line