Properties

Label 4-363e2-1.1-c1e2-0-10
Degree $4$
Conductor $131769$
Sign $-1$
Analytic cond. $8.40170$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·4-s − 4·7-s + 9-s − 6·12-s + 2·13-s + 5·16-s + 12·19-s − 8·21-s − 9·25-s − 4·27-s + 12·28-s − 4·31-s − 3·36-s − 6·37-s + 4·39-s + 10·48-s − 2·49-s − 6·52-s + 24·57-s + 12·61-s − 4·63-s − 3·64-s + 4·67-s − 4·73-s − 18·75-s − 36·76-s + ⋯
L(s)  = 1  + 1.15·3-s − 3/2·4-s − 1.51·7-s + 1/3·9-s − 1.73·12-s + 0.554·13-s + 5/4·16-s + 2.75·19-s − 1.74·21-s − 9/5·25-s − 0.769·27-s + 2.26·28-s − 0.718·31-s − 1/2·36-s − 0.986·37-s + 0.640·39-s + 1.44·48-s − 2/7·49-s − 0.832·52-s + 3.17·57-s + 1.53·61-s − 0.503·63-s − 3/8·64-s + 0.488·67-s − 0.468·73-s − 2.07·75-s − 4.12·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(131769\)    =    \(3^{2} \cdot 11^{4}\)
Sign: $-1$
Analytic conductor: \(8.40170\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 131769,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - 2 T + p T^{2} \)
11 \( 1 \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.182457967238804819066801847611, −8.731578058982900025567463262875, −8.356936232923193217562617522792, −7.69035551562908784013462192082, −7.43742239849917419501134588307, −6.72221402891887535126565651102, −6.02373904066748853888838701833, −5.38415572352897256696127903868, −5.21092257719357715807199072115, −3.96049656444482134108637352404, −3.84177902362047353880486406829, −3.26020657517957887232980598752, −2.75274084463573300677827364197, −1.45371564777531463821755560879, 0, 1.45371564777531463821755560879, 2.75274084463573300677827364197, 3.26020657517957887232980598752, 3.84177902362047353880486406829, 3.96049656444482134108637352404, 5.21092257719357715807199072115, 5.38415572352897256696127903868, 6.02373904066748853888838701833, 6.72221402891887535126565651102, 7.43742239849917419501134588307, 7.69035551562908784013462192082, 8.356936232923193217562617522792, 8.731578058982900025567463262875, 9.182457967238804819066801847611

Graph of the $Z$-function along the critical line