Properties

Label 4-304927-1.1-c1e2-0-0
Degree $4$
Conductor $304927$
Sign $-1$
Analytic cond. $19.4424$
Root an. cond. $2.09984$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·4-s − 3·8-s + 9-s − 2·11-s − 13·16-s + 3·18-s − 6·22-s − 6·23-s + 25-s − 3·29-s − 15·32-s + 3·36-s + 13·37-s − 17·43-s − 6·44-s − 18·46-s + 3·50-s − 15·53-s − 9·58-s + 3·64-s + 5·67-s − 4·71-s − 3·72-s + 39·74-s − 4·79-s − 8·81-s + ⋯
L(s)  = 1  + 2.12·2-s + 3/2·4-s − 1.06·8-s + 1/3·9-s − 0.603·11-s − 3.25·16-s + 0.707·18-s − 1.27·22-s − 1.25·23-s + 1/5·25-s − 0.557·29-s − 2.65·32-s + 1/2·36-s + 2.13·37-s − 2.59·43-s − 0.904·44-s − 2.65·46-s + 0.424·50-s − 2.06·53-s − 1.18·58-s + 3/8·64-s + 0.610·67-s − 0.474·71-s − 0.353·72-s + 4.53·74-s − 0.450·79-s − 8/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304927 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304927 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(304927\)    =    \(7^{4} \cdot 127\)
Sign: $-1$
Analytic conductor: \(19.4424\)
Root analytic conductor: \(2.09984\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 304927,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
127$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 15 T + p T^{2} ) \)
good2$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 - T + p T^{2} ) \)
3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 88 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 101 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 93 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.376235919645744588680498612985, −8.146768063952007773629782046787, −7.60618368093220024237124522100, −6.89694339732238717200344841029, −6.29774301985203867958611827490, −6.16934913023246681005189407165, −5.41101634315997015782412637012, −5.17967285299293180914106695486, −4.60471145893697746959349398858, −4.16172541632434519708907903166, −3.76416890388226111834559063911, −3.05376541926548206386059242744, −2.66778158053672176257314357951, −1.69604112364983410564776452035, 0, 1.69604112364983410564776452035, 2.66778158053672176257314357951, 3.05376541926548206386059242744, 3.76416890388226111834559063911, 4.16172541632434519708907903166, 4.60471145893697746959349398858, 5.17967285299293180914106695486, 5.41101634315997015782412637012, 6.16934913023246681005189407165, 6.29774301985203867958611827490, 6.89694339732238717200344841029, 7.60618368093220024237124522100, 8.146768063952007773629782046787, 8.376235919645744588680498612985

Graph of the $Z$-function along the critical line