Properties

Label 4-2128e2-1.1-c3e2-0-2
Degree $4$
Conductor $4528384$
Sign $1$
Analytic cond. $15764.3$
Root an. cond. $11.2051$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·3-s − 14·5-s − 14·7-s + 12·9-s + 29·11-s − 94·13-s − 98·15-s − 37·17-s − 38·19-s − 98·21-s + 72·23-s − 51·25-s + 14·27-s − 77·29-s + 585·31-s + 203·33-s + 196·35-s − 110·37-s − 658·39-s − 199·41-s − 324·43-s − 168·45-s + 64·47-s + 147·49-s − 259·51-s + 613·53-s − 406·55-s + ⋯
L(s)  = 1  + 1.34·3-s − 1.25·5-s − 0.755·7-s + 4/9·9-s + 0.794·11-s − 2.00·13-s − 1.68·15-s − 0.527·17-s − 0.458·19-s − 1.01·21-s + 0.652·23-s − 0.407·25-s + 0.0997·27-s − 0.493·29-s + 3.38·31-s + 1.07·33-s + 0.946·35-s − 0.488·37-s − 2.70·39-s − 0.758·41-s − 1.14·43-s − 0.556·45-s + 0.198·47-s + 3/7·49-s − 0.711·51-s + 1.58·53-s − 0.995·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4528384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4528384 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4528384\)    =    \(2^{8} \cdot 7^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(15764.3\)
Root analytic conductor: \(11.2051\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 4528384,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 + p T )^{2} \)
19$C_1$ \( ( 1 + p T )^{2} \)
good3$D_{4}$ \( 1 - 7 T + 37 T^{2} - 7 p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 14 T + 247 T^{2} + 14 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 29 T + 2323 T^{2} - 29 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 94 T + 6551 T^{2} + 94 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 37 T + 8995 T^{2} + 37 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 72 T + 25513 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 77 T + 27871 T^{2} + 77 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 585 T + 144979 T^{2} - 585 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 110 T + 57531 T^{2} + 110 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 199 T + 26683 T^{2} + 199 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 324 T + 160090 T^{2} + 324 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 64 T + 190873 T^{2} - 64 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 613 T + 273133 T^{2} - 613 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 6 p T + 20887 T^{2} - 6 p^{4} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1150 T + 740855 T^{2} + 1150 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 649 T + 678717 T^{2} + 649 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 150 T + 428947 T^{2} + 150 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 625 T + 283121 T^{2} + 625 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 988 T + 430562 T^{2} - 988 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1589 T + 1741651 T^{2} + 1589 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 302 T + 175366 T^{2} - 302 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 690 T + 1532479 T^{2} + 690 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.440964008413877245522013345785, −8.344582429459640704345538852097, −7.74010609306771739439139359820, −7.48795036079778525137502038682, −7.04376716798980380930251117238, −6.85198382199154608124246860665, −6.15700518001562718218840128235, −6.06787332113390786912415514488, −5.03275503433016018897213985822, −4.86204275445786664345214050361, −4.28279989542819299457587436348, −4.09601171032764689906368351958, −3.39983017234312367654861729526, −3.16787936157408066978213346918, −2.54275960939717627540060865004, −2.48843697241038541838432259947, −1.65650454078402592009380597124, −0.906518602653379954870180114352, 0, 0, 0.906518602653379954870180114352, 1.65650454078402592009380597124, 2.48843697241038541838432259947, 2.54275960939717627540060865004, 3.16787936157408066978213346918, 3.39983017234312367654861729526, 4.09601171032764689906368351958, 4.28279989542819299457587436348, 4.86204275445786664345214050361, 5.03275503433016018897213985822, 6.06787332113390786912415514488, 6.15700518001562718218840128235, 6.85198382199154608124246860665, 7.04376716798980380930251117238, 7.48795036079778525137502038682, 7.74010609306771739439139359820, 8.344582429459640704345538852097, 8.440964008413877245522013345785

Graph of the $Z$-function along the critical line