Properties

Label 4-1645567-1.1-c1e2-0-1
Degree $4$
Conductor $1645567$
Sign $-1$
Analytic cond. $104.922$
Root an. cond. $3.20049$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·4-s + 7-s − 3·8-s + 2·9-s + 4·11-s + 3·14-s − 13·16-s + 6·18-s + 12·22-s − 4·23-s + 4·25-s + 3·28-s − 4·29-s − 15·32-s + 6·36-s − 19·37-s − 7·43-s + 12·44-s − 12·46-s − 6·49-s + 12·50-s + 5·53-s − 3·56-s − 12·58-s + 2·63-s + 3·64-s + ⋯
L(s)  = 1  + 2.12·2-s + 3/2·4-s + 0.377·7-s − 1.06·8-s + 2/3·9-s + 1.20·11-s + 0.801·14-s − 3.25·16-s + 1.41·18-s + 2.55·22-s − 0.834·23-s + 4/5·25-s + 0.566·28-s − 0.742·29-s − 2.65·32-s + 36-s − 3.12·37-s − 1.06·43-s + 1.80·44-s − 1.76·46-s − 6/7·49-s + 1.69·50-s + 0.686·53-s − 0.400·56-s − 1.57·58-s + 0.251·63-s + 3/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1645567 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1645567 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1645567\)    =    \(7^{2} \cdot 11 \cdot 43 \cdot 71\)
Sign: $-1$
Analytic conductor: \(104.922\)
Root analytic conductor: \(3.20049\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1645567,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 - T + p T^{2} \)
11$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 5 T + p T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 8 T + p T^{2} ) \)
71$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 12 T + p T^{2} ) \)
good2$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 - T + p T^{2} ) \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 45 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - T + p T^{2} ) \)
59$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 60 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30632058494599380054055056279, −7.00315789921653367328950246187, −6.58106055746413113056851328016, −6.29354323658527569444343329854, −5.66471517363655632918702801672, −5.24138493336419765024064280046, −5.06492396909371207355675797649, −4.45739408449607958944645512336, −4.08255965397155433719543814974, −3.70724092088203652966821915887, −3.38763383724293672560795593317, −2.76521804356587140189335911171, −1.92099673422861797016111438841, −1.40402873982953243427890378198, 0, 1.40402873982953243427890378198, 1.92099673422861797016111438841, 2.76521804356587140189335911171, 3.38763383724293672560795593317, 3.70724092088203652966821915887, 4.08255965397155433719543814974, 4.45739408449607958944645512336, 5.06492396909371207355675797649, 5.24138493336419765024064280046, 5.66471517363655632918702801672, 6.29354323658527569444343329854, 6.58106055746413113056851328016, 7.00315789921653367328950246187, 7.30632058494599380054055056279

Graph of the $Z$-function along the critical line