Properties

Label 4-154e2-1.1-c7e2-0-0
Degree $4$
Conductor $23716$
Sign $1$
Analytic cond. $2314.31$
Root an. cond. $6.93594$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 21·3-s + 192·4-s − 413·5-s + 336·6-s + 686·7-s + 2.04e3·8-s − 3.03e3·9-s − 6.60e3·10-s + 2.66e3·11-s + 4.03e3·12-s − 5.72e3·13-s + 1.09e4·14-s − 8.67e3·15-s + 2.04e4·16-s − 2.36e3·17-s − 4.85e4·18-s − 1.56e4·19-s − 7.92e4·20-s + 1.44e4·21-s + 4.25e4·22-s − 3.75e4·23-s + 4.30e4·24-s − 1.47e4·25-s − 9.16e4·26-s − 9.07e4·27-s + 1.31e5·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.449·3-s + 3/2·4-s − 1.47·5-s + 0.635·6-s + 0.755·7-s + 1.41·8-s − 1.38·9-s − 2.08·10-s + 0.603·11-s + 0.673·12-s − 0.722·13-s + 1.06·14-s − 0.663·15-s + 5/4·16-s − 0.116·17-s − 1.96·18-s − 0.523·19-s − 2.21·20-s + 0.339·21-s + 0.852·22-s − 0.643·23-s + 0.635·24-s − 0.188·25-s − 1.02·26-s − 0.887·27-s + 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23716 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23716 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(23716\)    =    \(2^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2314.31\)
Root analytic conductor: \(6.93594\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 23716,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{3} T )^{2} \)
7$C_1$ \( ( 1 - p^{3} T )^{2} \)
11$C_1$ \( ( 1 - p^{3} T )^{2} \)
good3$D_{4}$ \( 1 - 7 p T + 386 p^{2} T^{2} - 7 p^{8} T^{3} + p^{14} T^{4} \)
5$D_{4}$ \( 1 + 413 T + 37062 p T^{2} + 413 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 + 5726 T + 35771842 T^{2} + 5726 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 + 2366 T + 815718546 T^{2} + 2366 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 + 15652 T + 1564496170 T^{2} + 15652 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 + 37541 T + 7012238258 T^{2} + 37541 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 164208 T + 29127860870 T^{2} + 164208 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 119273 T + 39876144312 T^{2} + 119273 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 517723 T + 199169242168 T^{2} + 517723 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 443170 T + 428668935762 T^{2} + 443170 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 382680 T + 555899623110 T^{2} + 382680 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 366674 T + 1041762474206 T^{2} + 366674 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 369464 T + 410478710598 T^{2} + 369464 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 - 775607 T + 3950461055958 T^{2} - 775607 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 - 309708 T + 3809100555534 T^{2} - 309708 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 6769843 T + 23186849804802 T^{2} + 6769843 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 4942531 T + 19037878820790 T^{2} + 4942531 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 3473134 T + 22770350650882 T^{2} + 3473134 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 2066106 T + 39469883881838 T^{2} + 2066106 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 4602514 T + 44658086650782 T^{2} + 4602514 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 - 7529515 T + 99213521624108 T^{2} - 7529515 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 - 20463205 T + 250744729268272 T^{2} - 20463205 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.62022467291813457911919702773, −11.32982111601783664047832735639, −10.55965129064916264675834604121, −10.15585120324282200429147802357, −8.935706458729627690517364101235, −8.869262955489605742617674215011, −7.917654615969877722409245907260, −7.81317420081086206373458948891, −7.17346348613128858414279747223, −6.53198945172018454007503989698, −5.67948100909831623287787464062, −5.41232680931941986887181840344, −4.46971797757819344921556305927, −4.20670622655199017144012044932, −3.30798942299883007286007726909, −3.25401980540532905835705264790, −2.05376772191971197117028153972, −1.71412309833694170492545425824, 0, 0, 1.71412309833694170492545425824, 2.05376772191971197117028153972, 3.25401980540532905835705264790, 3.30798942299883007286007726909, 4.20670622655199017144012044932, 4.46971797757819344921556305927, 5.41232680931941986887181840344, 5.67948100909831623287787464062, 6.53198945172018454007503989698, 7.17346348613128858414279747223, 7.81317420081086206373458948891, 7.917654615969877722409245907260, 8.869262955489605742617674215011, 8.935706458729627690517364101235, 10.15585120324282200429147802357, 10.55965129064916264675834604121, 11.32982111601783664047832735639, 11.62022467291813457911919702773

Graph of the $Z$-function along the critical line