Properties

Label 4-1342e2-1.1-c1e2-0-2
Degree $4$
Conductor $1800964$
Sign $1$
Analytic cond. $114.831$
Root an. cond. $3.27351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·3-s + 3·4-s + 2·5-s + 6·6-s + 7-s + 4·8-s + 2·9-s + 4·10-s + 2·11-s + 9·12-s − 2·13-s + 2·14-s + 6·15-s + 5·16-s + 6·17-s + 4·18-s − 5·19-s + 6·20-s + 3·21-s + 4·22-s + 13·23-s + 12·24-s − 2·25-s − 4·26-s − 6·27-s + 3·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.73·3-s + 3/2·4-s + 0.894·5-s + 2.44·6-s + 0.377·7-s + 1.41·8-s + 2/3·9-s + 1.26·10-s + 0.603·11-s + 2.59·12-s − 0.554·13-s + 0.534·14-s + 1.54·15-s + 5/4·16-s + 1.45·17-s + 0.942·18-s − 1.14·19-s + 1.34·20-s + 0.654·21-s + 0.852·22-s + 2.71·23-s + 2.44·24-s − 2/5·25-s − 0.784·26-s − 1.15·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800964 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800964 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1800964\)    =    \(2^{2} \cdot 11^{2} \cdot 61^{2}\)
Sign: $1$
Analytic conductor: \(114.831\)
Root analytic conductor: \(3.27351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1800964,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(14.25144729\)
\(L(\frac12)\) \(\approx\) \(14.25144729\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
61$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 - p T + 7 T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - 2 T + 6 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - T + 3 T^{2} - p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 6 T + 38 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 5 T + 43 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 13 T + 87 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 5 T + 63 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 11 T + 93 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
41$C_4$ \( 1 - 9 T + 71 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 8 T + 82 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 14 T + 138 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 7 T + 117 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T - 42 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 11 T + 141 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 7 T + 147 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 20 T + 238 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 3 T + 167 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 30 T + 398 T^{2} + 30 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 19 T + 273 T^{2} + 19 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.634126331381542459571156696462, −9.493853679170923711707262100218, −9.016658602990005590277194655382, −8.644788163759113683635177991488, −8.037627792011846380130734080206, −7.83546913147491549375525514035, −7.41512039326949315457536960330, −6.96485536256370916756438461341, −6.40570834177842911019681542203, −6.03683944736667851634956157477, −5.43166164504026626785493084882, −5.38701349981501582034839191934, −4.47587201385227917246782452243, −4.35136797229209741308935534869, −3.61055195245793942703063492052, −3.19710301862805042362604852835, −2.65100265788047042217550931325, −2.58572637566430163821537755543, −1.74499223070494619937004334258, −1.26339083872242493314239281878, 1.26339083872242493314239281878, 1.74499223070494619937004334258, 2.58572637566430163821537755543, 2.65100265788047042217550931325, 3.19710301862805042362604852835, 3.61055195245793942703063492052, 4.35136797229209741308935534869, 4.47587201385227917246782452243, 5.38701349981501582034839191934, 5.43166164504026626785493084882, 6.03683944736667851634956157477, 6.40570834177842911019681542203, 6.96485536256370916756438461341, 7.41512039326949315457536960330, 7.83546913147491549375525514035, 8.037627792011846380130734080206, 8.644788163759113683635177991488, 9.016658602990005590277194655382, 9.493853679170923711707262100218, 9.634126331381542459571156696462

Graph of the $Z$-function along the critical line