Properties

Label 2-98736-1.1-c1-0-43
Degree $2$
Conductor $98736$
Sign $1$
Analytic cond. $788.410$
Root an. cond. $28.0786$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 9-s − 4·13-s + 4·15-s − 17-s + 8·19-s + 11·25-s + 27-s + 8·29-s − 4·31-s + 11·37-s − 4·39-s − 9·41-s − 2·43-s + 4·45-s − 2·47-s − 7·49-s − 51-s − 3·53-s + 8·57-s − 9·59-s + 13·61-s − 16·65-s + 14·67-s + 5·71-s + 16·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1/3·9-s − 1.10·13-s + 1.03·15-s − 0.242·17-s + 1.83·19-s + 11/5·25-s + 0.192·27-s + 1.48·29-s − 0.718·31-s + 1.80·37-s − 0.640·39-s − 1.40·41-s − 0.304·43-s + 0.596·45-s − 0.291·47-s − 49-s − 0.140·51-s − 0.412·53-s + 1.05·57-s − 1.17·59-s + 1.66·61-s − 1.98·65-s + 1.71·67-s + 0.593·71-s + 1.87·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98736\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(788.410\)
Root analytic conductor: \(28.0786\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 98736,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.742953011\)
\(L(\frac12)\) \(\approx\) \(5.742953011\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 - 5 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92428931611252, −13.31565203133664, −12.97536155588707, −12.40316446562745, −11.93854993503482, −11.23552989082165, −10.74512315789389, −9.943663678947247, −9.790610312208983, −9.508845817839744, −9.010452887045587, −8.173666591064162, −7.927792413646076, −7.075086650852332, −6.696637378501826, −6.224342206956580, −5.485529396295491, −4.938507675627019, −4.840589945222803, −3.671792695255930, −3.119290959956101, −2.489312963370453, −2.136969980746537, −1.374197174499013, −0.7412828028425318, 0.7412828028425318, 1.374197174499013, 2.136969980746537, 2.489312963370453, 3.119290959956101, 3.671792695255930, 4.840589945222803, 4.938507675627019, 5.485529396295491, 6.224342206956580, 6.696637378501826, 7.075086650852332, 7.927792413646076, 8.173666591064162, 9.010452887045587, 9.508845817839744, 9.790610312208983, 9.943663678947247, 10.74512315789389, 11.23552989082165, 11.93854993503482, 12.40316446562745, 12.97536155588707, 13.31565203133664, 13.92428931611252

Graph of the $Z$-function along the critical line