Properties

Label 2-91-91.90-c10-0-63
Degree $2$
Conductor $91$
Sign $1$
Analytic cond. $57.8175$
Root an. cond. $7.60378$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.02e3·4-s + 6.24e3·5-s − 1.68e4·7-s + 5.90e4·9-s + 3.71e5·13-s + 1.04e6·16-s + 2.14e6·19-s + 6.39e6·20-s − 6.46e6·23-s + 2.92e7·25-s − 1.72e7·28-s − 4.72e6·29-s − 4.21e7·31-s − 1.04e8·35-s + 6.04e7·36-s − 2.21e8·41-s − 8.43e7·43-s + 3.68e8·45-s + 4.06e8·47-s + 2.82e8·49-s + 3.80e8·52-s + 5.45e8·53-s − 1.33e9·59-s − 9.92e8·63-s + 1.07e9·64-s + 2.31e9·65-s − 3.48e9·73-s + ⋯
L(s)  = 1  + 4-s + 1.99·5-s − 7-s + 9-s + 13-s + 16-s + 0.867·19-s + 1.99·20-s − 1.00·23-s + 2.99·25-s − 28-s − 0.230·29-s − 1.47·31-s − 1.99·35-s + 36-s − 1.90·41-s − 0.573·43-s + 1.99·45-s + 1.77·47-s + 49-s + 52-s + 1.30·53-s − 1.86·59-s − 63-s + 64-s + 1.99·65-s − 1.68·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $1$
Analytic conductor: \(57.8175\)
Root analytic conductor: \(7.60378\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: $\chi_{91} (90, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(4.280678516\)
\(L(\frac12)\) \(\approx\) \(4.280678516\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + p^{5} T \)
13 \( 1 - p^{5} T \)
good2 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
3 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
5 \( 1 - 6243 T + p^{10} T^{2} \)
11 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
17 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
19 \( 1 - 2147375 T + p^{10} T^{2} \)
23 \( 1 + 6466725 T + p^{10} T^{2} \)
29 \( 1 + 4721673 T + p^{10} T^{2} \)
31 \( 1 + 42179225 T + p^{10} T^{2} \)
37 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
41 \( 1 + 221229150 T + p^{10} T^{2} \)
43 \( 1 + 84317525 T + p^{10} T^{2} \)
47 \( 1 - 406710639 T + p^{10} T^{2} \)
53 \( 1 - 545143575 T + p^{10} T^{2} \)
59 \( 1 + 1330532550 T + p^{10} T^{2} \)
61 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
67 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
71 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
73 \( 1 + 3488411189 T + p^{10} T^{2} \)
79 \( 1 - 5013092827 T + p^{10} T^{2} \)
83 \( 1 - 893026839 T + p^{10} T^{2} \)
89 \( 1 - 3850158675 T + p^{10} T^{2} \)
97 \( 1 + 9195272389 T + p^{10} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23116874392716546508043210527, −10.60882419153118837687103128862, −10.03306962232178709721904959211, −9.097761705280783524899569333665, −7.17717030272262181642486514594, −6.30080664935519594460025193152, −5.55626747476332430665909574137, −3.41928952876231657969455093576, −2.10369014234273439765813355288, −1.27257268861384825727314505015, 1.27257268861384825727314505015, 2.10369014234273439765813355288, 3.41928952876231657969455093576, 5.55626747476332430665909574137, 6.30080664935519594460025193152, 7.17717030272262181642486514594, 9.097761705280783524899569333665, 10.03306962232178709721904959211, 10.60882419153118837687103128862, 12.23116874392716546508043210527

Graph of the $Z$-function along the critical line