L(s) = 1 | − 3i·3-s − 14i·5-s − 24·7-s − 9·9-s − 28i·11-s − 74i·13-s − 42·15-s + 82·17-s − 92i·19-s + 72i·21-s + 8·23-s − 71·25-s + 27i·27-s − 138i·29-s − 80·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 1.25i·5-s − 1.29·7-s − 0.333·9-s − 0.767i·11-s − 1.57i·13-s − 0.722·15-s + 1.16·17-s − 1.11i·19-s + 0.748i·21-s + 0.0725·23-s − 0.568·25-s + 0.192i·27-s − 0.883i·29-s − 0.463·31-s + ⋯ |
Λ(s)=(=(768s/2ΓC(s)L(s)(−0.707−0.707i)Λ(4−s)
Λ(s)=(=(768s/2ΓC(s+3/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
768
= 28⋅3
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
45.3134 |
Root analytic conductor: |
6.73152 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ768(385,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 768, ( :3/2), −0.707−0.707i)
|
Particular Values
L(2) |
≈ |
1.029883447 |
L(21) |
≈ |
1.029883447 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
good | 5 | 1+14iT−125T2 |
| 7 | 1+24T+343T2 |
| 11 | 1+28iT−1.33e3T2 |
| 13 | 1+74iT−2.19e3T2 |
| 17 | 1−82T+4.91e3T2 |
| 19 | 1+92iT−6.85e3T2 |
| 23 | 1−8T+1.21e4T2 |
| 29 | 1+138iT−2.43e4T2 |
| 31 | 1+80T+2.97e4T2 |
| 37 | 1+30iT−5.06e4T2 |
| 41 | 1+282T+6.89e4T2 |
| 43 | 1−4iT−7.95e4T2 |
| 47 | 1+240T+1.03e5T2 |
| 53 | 1−130iT−1.48e5T2 |
| 59 | 1−596iT−2.05e5T2 |
| 61 | 1+218iT−2.26e5T2 |
| 67 | 1−436iT−3.00e5T2 |
| 71 | 1−856T+3.57e5T2 |
| 73 | 1−998T+3.89e5T2 |
| 79 | 1−32T+4.93e5T2 |
| 83 | 1−1.50e3iT−5.71e5T2 |
| 89 | 1−246T+7.04e5T2 |
| 97 | 1−866T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.357980000937952687519437417531, −8.468018738034087619685244699889, −7.83562745865748635318416457442, −6.71365559187858951590043620734, −5.74551550750571376064039165237, −5.15055055744073820492781780992, −3.61171907099952536160179163117, −2.76678432207595766815678875213, −0.984356794191576457958615555067, −0.33227264278853253182183223493,
1.92615398707818483023844590106, 3.25465306421631206924755681275, 3.73665523670741735984778100129, 5.09051760507480844054882651891, 6.36488920915821683270876777282, 6.76412950236055971932347983173, 7.73507435079042067658638917298, 9.062189721558620557559479501246, 9.843096620261683063123788637639, 10.19163377475394451099004904742