Properties

Label 2-69-69.11-c1-0-2
Degree $2$
Conductor $69$
Sign $0.654 - 0.755i$
Analytic cond. $0.550967$
Root an. cond. $0.742272$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.13 + 1.77i)2-s + (0.180 − 1.72i)3-s + (−1.01 + 2.21i)4-s + (−1.10 + 0.324i)5-s + (3.25 − 1.64i)6-s + (−1.21 + 1.05i)7-s + (−0.918 + 0.132i)8-s + (−2.93 − 0.622i)9-s + (−1.83 − 1.58i)10-s + (−4.10 − 2.63i)11-s + (3.64 + 2.14i)12-s + (2.30 − 2.66i)13-s + (−3.26 − 0.958i)14-s + (0.359 + 1.96i)15-s + (1.91 + 2.21i)16-s + (2.44 + 5.35i)17-s + ⋯
L(s)  = 1  + (0.805 + 1.25i)2-s + (0.104 − 0.994i)3-s + (−0.506 + 1.10i)4-s + (−0.494 + 0.145i)5-s + (1.33 − 0.670i)6-s + (−0.461 + 0.399i)7-s + (−0.324 + 0.0466i)8-s + (−0.978 − 0.207i)9-s + (−0.580 − 0.502i)10-s + (−1.23 − 0.794i)11-s + (1.05 + 0.619i)12-s + (0.640 − 0.738i)13-s + (−0.872 − 0.256i)14-s + (0.0927 + 0.506i)15-s + (0.478 + 0.552i)16-s + (0.593 + 1.29i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69\)    =    \(3 \cdot 23\)
Sign: $0.654 - 0.755i$
Analytic conductor: \(0.550967\)
Root analytic conductor: \(0.742272\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{69} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 69,\ (\ :1/2),\ 0.654 - 0.755i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.09523 + 0.500220i\)
\(L(\frac12)\) \(\approx\) \(1.09523 + 0.500220i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.180 + 1.72i)T \)
23 \( 1 + (2.74 + 3.93i)T \)
good2 \( 1 + (-1.13 - 1.77i)T + (-0.830 + 1.81i)T^{2} \)
5 \( 1 + (1.10 - 0.324i)T + (4.20 - 2.70i)T^{2} \)
7 \( 1 + (1.21 - 1.05i)T + (0.996 - 6.92i)T^{2} \)
11 \( 1 + (4.10 + 2.63i)T + (4.56 + 10.0i)T^{2} \)
13 \( 1 + (-2.30 + 2.66i)T + (-1.85 - 12.8i)T^{2} \)
17 \( 1 + (-2.44 - 5.35i)T + (-11.1 + 12.8i)T^{2} \)
19 \( 1 + (-3.45 - 1.57i)T + (12.4 + 14.3i)T^{2} \)
29 \( 1 + (-4.87 + 2.22i)T + (18.9 - 21.9i)T^{2} \)
31 \( 1 + (0.200 + 1.39i)T + (-29.7 + 8.73i)T^{2} \)
37 \( 1 + (0.670 - 2.28i)T + (-31.1 - 20.0i)T^{2} \)
41 \( 1 + (-0.848 - 2.89i)T + (-34.4 + 22.1i)T^{2} \)
43 \( 1 + (-1.65 - 0.238i)T + (41.2 + 12.1i)T^{2} \)
47 \( 1 + 11.0iT - 47T^{2} \)
53 \( 1 + (4.00 + 4.62i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (-4.12 - 3.57i)T + (8.39 + 58.3i)T^{2} \)
61 \( 1 + (3.50 - 0.503i)T + (58.5 - 17.1i)T^{2} \)
67 \( 1 + (7.43 + 11.5i)T + (-27.8 + 60.9i)T^{2} \)
71 \( 1 + (0.503 + 0.784i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (-2.17 + 4.75i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (0.834 + 0.722i)T + (11.2 + 78.1i)T^{2} \)
83 \( 1 + (-9.84 - 2.89i)T + (69.8 + 44.8i)T^{2} \)
89 \( 1 + (0.477 - 3.32i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (3.01 + 10.2i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95009162903977529680800970438, −13.77095046956063073747195886638, −13.08242652297575667185581214446, −12.14071693017409329785732303947, −10.56098621578661012014291869683, −8.238096296538793748853814812134, −7.84108892686103740801594817419, −6.29478022657838396878312128421, −5.58257002099614484902795684159, −3.36161806427539556972414988990, 2.93069180611733879040430304618, 4.17485501230421630422263240797, 5.25139384246629179758380919327, 7.63357010756295092188507146012, 9.481342186995049461316017150843, 10.29781971652030830697674680699, 11.35812545881976125937298353123, 12.20322467185371723896372932673, 13.52695129880856747749491402114, 14.21444220310351994653146776821

Graph of the $Z$-function along the critical line