Properties

Label 2-667-1.1-c3-0-141
Degree $2$
Conductor $667$
Sign $-1$
Analytic cond. $39.3542$
Root an. cond. $6.27329$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.36·2-s − 3.86·3-s + 20.8·4-s − 16.8·5-s − 20.7·6-s + 34.1·7-s + 68.9·8-s − 12.0·9-s − 90.2·10-s − 69.6·11-s − 80.4·12-s − 86.0·13-s + 183.·14-s + 64.9·15-s + 203.·16-s − 0.387·17-s − 64.8·18-s − 17.1·19-s − 350.·20-s − 131.·21-s − 373.·22-s + 23·23-s − 266.·24-s + 157.·25-s − 462.·26-s + 150.·27-s + 711.·28-s + ⋯
L(s)  = 1  + 1.89·2-s − 0.743·3-s + 2.60·4-s − 1.50·5-s − 1.41·6-s + 1.84·7-s + 3.04·8-s − 0.447·9-s − 2.85·10-s − 1.90·11-s − 1.93·12-s − 1.83·13-s + 3.50·14-s + 1.11·15-s + 3.17·16-s − 0.00553·17-s − 0.849·18-s − 0.206·19-s − 3.91·20-s − 1.37·21-s − 3.62·22-s + 0.208·23-s − 2.26·24-s + 1.26·25-s − 3.48·26-s + 1.07·27-s + 4.80·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(39.3542\)
Root analytic conductor: \(6.27329\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 667,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 - 23T \)
29 \( 1 + 29T \)
good2 \( 1 - 5.36T + 8T^{2} \)
3 \( 1 + 3.86T + 27T^{2} \)
5 \( 1 + 16.8T + 125T^{2} \)
7 \( 1 - 34.1T + 343T^{2} \)
11 \( 1 + 69.6T + 1.33e3T^{2} \)
13 \( 1 + 86.0T + 2.19e3T^{2} \)
17 \( 1 + 0.387T + 4.91e3T^{2} \)
19 \( 1 + 17.1T + 6.85e3T^{2} \)
31 \( 1 + 97.9T + 2.97e4T^{2} \)
37 \( 1 + 8.18T + 5.06e4T^{2} \)
41 \( 1 + 357.T + 6.89e4T^{2} \)
43 \( 1 + 26.9T + 7.95e4T^{2} \)
47 \( 1 + 371.T + 1.03e5T^{2} \)
53 \( 1 + 530.T + 1.48e5T^{2} \)
59 \( 1 + 11.8T + 2.05e5T^{2} \)
61 \( 1 + 412.T + 2.26e5T^{2} \)
67 \( 1 - 345.T + 3.00e5T^{2} \)
71 \( 1 - 43.8T + 3.57e5T^{2} \)
73 \( 1 - 663.T + 3.89e5T^{2} \)
79 \( 1 - 303.T + 4.93e5T^{2} \)
83 \( 1 + 3.15T + 5.71e5T^{2} \)
89 \( 1 - 469.T + 7.04e5T^{2} \)
97 \( 1 - 584.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46621144258647288430662866189, −8.073291216211193933371132679457, −7.78654480801307116772351524606, −6.93581265305444503586209067264, −5.40790710742987266672170214331, −4.97403477740751779734454742579, −4.56373623536873977020687715815, −3.15567976811670029058791400938, −2.13662955826695852375662986691, 0, 2.13662955826695852375662986691, 3.15567976811670029058791400938, 4.56373623536873977020687715815, 4.97403477740751779734454742579, 5.40790710742987266672170214331, 6.93581265305444503586209067264, 7.78654480801307116772351524606, 8.073291216211193933371132679457, 10.46621144258647288430662866189

Graph of the $Z$-function along the critical line