Properties

Label 2-667-1.1-c3-0-140
Degree $2$
Conductor $667$
Sign $-1$
Analytic cond. $39.3542$
Root an. cond. $6.27329$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.34·2-s − 0.621·3-s + 10.8·4-s − 5.82·5-s − 2.69·6-s + 9.30·7-s + 12.3·8-s − 26.6·9-s − 25.3·10-s + 28.3·11-s − 6.74·12-s − 73.5·13-s + 40.3·14-s + 3.62·15-s − 33.0·16-s − 31.6·17-s − 115.·18-s + 49.8·19-s − 63.2·20-s − 5.78·21-s + 123.·22-s − 23·23-s − 7.69·24-s − 91.0·25-s − 319.·26-s + 33.3·27-s + 100.·28-s + ⋯
L(s)  = 1  + 1.53·2-s − 0.119·3-s + 1.35·4-s − 0.521·5-s − 0.183·6-s + 0.502·7-s + 0.547·8-s − 0.985·9-s − 0.800·10-s + 0.777·11-s − 0.162·12-s − 1.56·13-s + 0.770·14-s + 0.0623·15-s − 0.516·16-s − 0.452·17-s − 1.51·18-s + 0.602·19-s − 0.707·20-s − 0.0600·21-s + 1.19·22-s − 0.208·23-s − 0.0654·24-s − 0.728·25-s − 2.40·26-s + 0.237·27-s + 0.681·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(39.3542\)
Root analytic conductor: \(6.27329\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 667,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + 23T \)
29 \( 1 - 29T \)
good2 \( 1 - 4.34T + 8T^{2} \)
3 \( 1 + 0.621T + 27T^{2} \)
5 \( 1 + 5.82T + 125T^{2} \)
7 \( 1 - 9.30T + 343T^{2} \)
11 \( 1 - 28.3T + 1.33e3T^{2} \)
13 \( 1 + 73.5T + 2.19e3T^{2} \)
17 \( 1 + 31.6T + 4.91e3T^{2} \)
19 \( 1 - 49.8T + 6.85e3T^{2} \)
31 \( 1 + 222.T + 2.97e4T^{2} \)
37 \( 1 + 65.6T + 5.06e4T^{2} \)
41 \( 1 - 4.14T + 6.89e4T^{2} \)
43 \( 1 - 185.T + 7.95e4T^{2} \)
47 \( 1 + 397.T + 1.03e5T^{2} \)
53 \( 1 - 313.T + 1.48e5T^{2} \)
59 \( 1 + 181.T + 2.05e5T^{2} \)
61 \( 1 - 688.T + 2.26e5T^{2} \)
67 \( 1 + 241.T + 3.00e5T^{2} \)
71 \( 1 + 343.T + 3.57e5T^{2} \)
73 \( 1 - 367.T + 3.89e5T^{2} \)
79 \( 1 + 921.T + 4.93e5T^{2} \)
83 \( 1 - 324.T + 5.71e5T^{2} \)
89 \( 1 + 726.T + 7.04e5T^{2} \)
97 \( 1 + 891.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.736627769040784241539351909260, −8.763711719874416657185835544145, −7.64409809190338995756783115363, −6.81617179546323017101878634613, −5.74551031820212362227115297554, −5.02502353296515105933019487297, −4.16938168766747609053886141745, −3.19321012422204939721566888952, −2.09878633084068960977705046218, 0, 2.09878633084068960977705046218, 3.19321012422204939721566888952, 4.16938168766747609053886141745, 5.02502353296515105933019487297, 5.74551031820212362227115297554, 6.81617179546323017101878634613, 7.64409809190338995756783115363, 8.763711719874416657185835544145, 9.736627769040784241539351909260

Graph of the $Z$-function along the critical line