Properties

Label 2-667-1.1-c3-0-131
Degree $2$
Conductor $667$
Sign $-1$
Analytic cond. $39.3542$
Root an. cond. $6.27329$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s + 9.12·3-s − 6.00·4-s + 3.29·5-s − 12.8·6-s − 5.15·7-s + 19.7·8-s + 56.3·9-s − 4.65·10-s − 39.6·11-s − 54.8·12-s − 2.48·13-s + 7.27·14-s + 30.0·15-s + 20.1·16-s − 77.2·17-s − 79.5·18-s − 152.·19-s − 19.8·20-s − 47.0·21-s + 55.9·22-s − 23·23-s + 180.·24-s − 114.·25-s + 3.51·26-s + 267.·27-s + 30.9·28-s + ⋯
L(s)  = 1  − 0.498·2-s + 1.75·3-s − 0.751·4-s + 0.294·5-s − 0.876·6-s − 0.278·7-s + 0.873·8-s + 2.08·9-s − 0.147·10-s − 1.08·11-s − 1.31·12-s − 0.0531·13-s + 0.138·14-s + 0.518·15-s + 0.315·16-s − 1.10·17-s − 1.04·18-s − 1.84·19-s − 0.221·20-s − 0.489·21-s + 0.542·22-s − 0.208·23-s + 1.53·24-s − 0.913·25-s + 0.0264·26-s + 1.90·27-s + 0.209·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(39.3542\)
Root analytic conductor: \(6.27329\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 667,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + 23T \)
29 \( 1 - 29T \)
good2 \( 1 + 1.41T + 8T^{2} \)
3 \( 1 - 9.12T + 27T^{2} \)
5 \( 1 - 3.29T + 125T^{2} \)
7 \( 1 + 5.15T + 343T^{2} \)
11 \( 1 + 39.6T + 1.33e3T^{2} \)
13 \( 1 + 2.48T + 2.19e3T^{2} \)
17 \( 1 + 77.2T + 4.91e3T^{2} \)
19 \( 1 + 152.T + 6.85e3T^{2} \)
31 \( 1 - 14.0T + 2.97e4T^{2} \)
37 \( 1 - 403.T + 5.06e4T^{2} \)
41 \( 1 + 20.5T + 6.89e4T^{2} \)
43 \( 1 + 145.T + 7.95e4T^{2} \)
47 \( 1 + 12.6T + 1.03e5T^{2} \)
53 \( 1 + 229.T + 1.48e5T^{2} \)
59 \( 1 + 354.T + 2.05e5T^{2} \)
61 \( 1 - 375.T + 2.26e5T^{2} \)
67 \( 1 + 654.T + 3.00e5T^{2} \)
71 \( 1 - 547.T + 3.57e5T^{2} \)
73 \( 1 - 8.01T + 3.89e5T^{2} \)
79 \( 1 + 1.19e3T + 4.93e5T^{2} \)
83 \( 1 - 1.34e3T + 5.71e5T^{2} \)
89 \( 1 + 1.57e3T + 7.04e5T^{2} \)
97 \( 1 + 1.10e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.572755091956422336513359377730, −8.719487273944372875216314257479, −8.222998488181841402248395943850, −7.52576413911604364583273199887, −6.28537187293540298162495909006, −4.70295008390710116449450958125, −3.97949382398348058893610921651, −2.70124433286938814381210248617, −1.85441405668588152466446227581, 0, 1.85441405668588152466446227581, 2.70124433286938814381210248617, 3.97949382398348058893610921651, 4.70295008390710116449450958125, 6.28537187293540298162495909006, 7.52576413911604364583273199887, 8.222998488181841402248395943850, 8.719487273944372875216314257479, 9.572755091956422336513359377730

Graph of the $Z$-function along the critical line