Properties

Label 2-667-1.1-c3-0-124
Degree $2$
Conductor $667$
Sign $1$
Analytic cond. $39.3542$
Root an. cond. $6.27329$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.11·2-s + 3.69·3-s + 18.1·4-s + 3.66·5-s + 18.9·6-s + 28.3·7-s + 52.1·8-s − 13.3·9-s + 18.7·10-s + 0.682·11-s + 67.2·12-s + 53.7·13-s + 144.·14-s + 13.5·15-s + 121.·16-s − 109.·17-s − 68.1·18-s − 30.1·19-s + 66.5·20-s + 104.·21-s + 3.49·22-s + 23·23-s + 192.·24-s − 111.·25-s + 274.·26-s − 149.·27-s + 515.·28-s + ⋯
L(s)  = 1  + 1.80·2-s + 0.711·3-s + 2.27·4-s + 0.327·5-s + 1.28·6-s + 1.52·7-s + 2.30·8-s − 0.493·9-s + 0.592·10-s + 0.0187·11-s + 1.61·12-s + 1.14·13-s + 2.76·14-s + 0.233·15-s + 1.89·16-s − 1.56·17-s − 0.892·18-s − 0.364·19-s + 0.744·20-s + 1.08·21-s + 0.0338·22-s + 0.208·23-s + 1.63·24-s − 0.892·25-s + 2.07·26-s − 1.06·27-s + 3.47·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $1$
Analytic conductor: \(39.3542\)
Root analytic conductor: \(6.27329\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 667,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.308835696\)
\(L(\frac12)\) \(\approx\) \(9.308835696\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 - 23T \)
29 \( 1 - 29T \)
good2 \( 1 - 5.11T + 8T^{2} \)
3 \( 1 - 3.69T + 27T^{2} \)
5 \( 1 - 3.66T + 125T^{2} \)
7 \( 1 - 28.3T + 343T^{2} \)
11 \( 1 - 0.682T + 1.33e3T^{2} \)
13 \( 1 - 53.7T + 2.19e3T^{2} \)
17 \( 1 + 109.T + 4.91e3T^{2} \)
19 \( 1 + 30.1T + 6.85e3T^{2} \)
31 \( 1 + 66.7T + 2.97e4T^{2} \)
37 \( 1 + 97.3T + 5.06e4T^{2} \)
41 \( 1 + 336.T + 6.89e4T^{2} \)
43 \( 1 - 374.T + 7.95e4T^{2} \)
47 \( 1 - 498.T + 1.03e5T^{2} \)
53 \( 1 + 199.T + 1.48e5T^{2} \)
59 \( 1 - 192.T + 2.05e5T^{2} \)
61 \( 1 - 101.T + 2.26e5T^{2} \)
67 \( 1 + 237.T + 3.00e5T^{2} \)
71 \( 1 - 801.T + 3.57e5T^{2} \)
73 \( 1 + 210.T + 3.89e5T^{2} \)
79 \( 1 + 1.12e3T + 4.93e5T^{2} \)
83 \( 1 + 193.T + 5.71e5T^{2} \)
89 \( 1 - 445.T + 7.04e5T^{2} \)
97 \( 1 + 16.2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66782704706548726591809248583, −8.966393181807718855147307572498, −8.320411855558312724345678471411, −7.28249814873486063149845217984, −6.19423898763728087859555591536, −5.44233372038378195625802483033, −4.46952308227260143297949186555, −3.72244195744786227114731675372, −2.45710202229460113073999659385, −1.75181071567793654018771642793, 1.75181071567793654018771642793, 2.45710202229460113073999659385, 3.72244195744786227114731675372, 4.46952308227260143297949186555, 5.44233372038378195625802483033, 6.19423898763728087859555591536, 7.28249814873486063149845217984, 8.320411855558312724345678471411, 8.966393181807718855147307572498, 10.66782704706548726591809248583

Graph of the $Z$-function along the critical line