Properties

Label 2-667-1.1-c3-0-101
Degree $2$
Conductor $667$
Sign $-1$
Analytic cond. $39.3542$
Root an. cond. $6.27329$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.356·2-s + 0.508·3-s − 7.87·4-s − 0.0507·5-s − 0.181·6-s + 30.7·7-s + 5.66·8-s − 26.7·9-s + 0.0180·10-s − 19.0·11-s − 4.00·12-s − 20.4·13-s − 10.9·14-s − 0.0258·15-s + 60.9·16-s − 16.3·17-s + 9.54·18-s + 77.8·19-s + 0.399·20-s + 15.6·21-s + 6.81·22-s + 23·23-s + 2.88·24-s − 124.·25-s + 7.30·26-s − 27.3·27-s − 241.·28-s + ⋯
L(s)  = 1  − 0.126·2-s + 0.0979·3-s − 0.984·4-s − 0.00453·5-s − 0.0123·6-s + 1.65·7-s + 0.250·8-s − 0.990·9-s + 0.000572·10-s − 0.523·11-s − 0.0963·12-s − 0.436·13-s − 0.209·14-s − 0.000444·15-s + 0.952·16-s − 0.233·17-s + 0.124·18-s + 0.939·19-s + 0.00446·20-s + 0.162·21-s + 0.0660·22-s + 0.208·23-s + 0.0245·24-s − 0.999·25-s + 0.0551·26-s − 0.194·27-s − 1.63·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(39.3542\)
Root analytic conductor: \(6.27329\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 667,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 - 23T \)
29 \( 1 + 29T \)
good2 \( 1 + 0.356T + 8T^{2} \)
3 \( 1 - 0.508T + 27T^{2} \)
5 \( 1 + 0.0507T + 125T^{2} \)
7 \( 1 - 30.7T + 343T^{2} \)
11 \( 1 + 19.0T + 1.33e3T^{2} \)
13 \( 1 + 20.4T + 2.19e3T^{2} \)
17 \( 1 + 16.3T + 4.91e3T^{2} \)
19 \( 1 - 77.8T + 6.85e3T^{2} \)
31 \( 1 - 161.T + 2.97e4T^{2} \)
37 \( 1 - 66.7T + 5.06e4T^{2} \)
41 \( 1 + 209.T + 6.89e4T^{2} \)
43 \( 1 + 25.8T + 7.95e4T^{2} \)
47 \( 1 + 457.T + 1.03e5T^{2} \)
53 \( 1 - 151.T + 1.48e5T^{2} \)
59 \( 1 - 202.T + 2.05e5T^{2} \)
61 \( 1 - 592.T + 2.26e5T^{2} \)
67 \( 1 + 853.T + 3.00e5T^{2} \)
71 \( 1 + 1.18e3T + 3.57e5T^{2} \)
73 \( 1 + 801.T + 3.89e5T^{2} \)
79 \( 1 + 1.09e3T + 4.93e5T^{2} \)
83 \( 1 + 205.T + 5.71e5T^{2} \)
89 \( 1 + 513.T + 7.04e5T^{2} \)
97 \( 1 - 644.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.634364106672096888389606850898, −8.598812982069868851215486285476, −8.162274768467140536998033519930, −7.38866308414921208569335701566, −5.70227745373342542618366147698, −5.09204269119397483302513263183, −4.26489772632304758185044085943, −2.86902193205714973187160447253, −1.46433774746949862808110176279, 0, 1.46433774746949862808110176279, 2.86902193205714973187160447253, 4.26489772632304758185044085943, 5.09204269119397483302513263183, 5.70227745373342542618366147698, 7.38866308414921208569335701566, 8.162274768467140536998033519930, 8.598812982069868851215486285476, 9.634364106672096888389606850898

Graph of the $Z$-function along the critical line