Properties

Label 2-57-19.14-c2-0-2
Degree $2$
Conductor $57$
Sign $-0.129 - 0.991i$
Analytic cond. $1.55313$
Root an. cond. $1.24624$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.04 + 2.87i)2-s + (1.70 + 0.300i)3-s + (−4.10 + 3.44i)4-s + (0.191 + 0.160i)5-s + (0.919 + 5.21i)6-s + (−3.85 − 6.67i)7-s + (−3.58 − 2.07i)8-s + (2.81 + 1.02i)9-s + (−0.260 + 0.716i)10-s + (4.20 − 7.27i)11-s + (−8.03 + 4.63i)12-s + (−16.3 + 2.87i)13-s + (15.1 − 18.0i)14-s + (0.277 + 0.330i)15-s + (−1.51 + 8.61i)16-s + (10.7 − 3.89i)17-s + ⋯
L(s)  = 1  + (0.523 + 1.43i)2-s + (0.568 + 0.100i)3-s + (−1.02 + 0.860i)4-s + (0.0382 + 0.0320i)5-s + (0.153 + 0.869i)6-s + (−0.550 − 0.953i)7-s + (−0.448 − 0.258i)8-s + (0.313 + 0.114i)9-s + (−0.0260 + 0.0716i)10-s + (0.381 − 0.661i)11-s + (−0.669 + 0.386i)12-s + (−1.25 + 0.221i)13-s + (1.08 − 1.29i)14-s + (0.0185 + 0.0220i)15-s + (−0.0949 + 0.538i)16-s + (0.630 − 0.229i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 - 0.991i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57\)    =    \(3 \cdot 19\)
Sign: $-0.129 - 0.991i$
Analytic conductor: \(1.55313\)
Root analytic conductor: \(1.24624\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{57} (52, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 57,\ (\ :1),\ -0.129 - 0.991i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.07889 + 1.22918i\)
\(L(\frac12)\) \(\approx\) \(1.07889 + 1.22918i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.70 - 0.300i)T \)
19 \( 1 + (-18.9 + 0.183i)T \)
good2 \( 1 + (-1.04 - 2.87i)T + (-3.06 + 2.57i)T^{2} \)
5 \( 1 + (-0.191 - 0.160i)T + (4.34 + 24.6i)T^{2} \)
7 \( 1 + (3.85 + 6.67i)T + (-24.5 + 42.4i)T^{2} \)
11 \( 1 + (-4.20 + 7.27i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (16.3 - 2.87i)T + (158. - 57.8i)T^{2} \)
17 \( 1 + (-10.7 + 3.89i)T + (221. - 185. i)T^{2} \)
23 \( 1 + (-0.904 + 0.758i)T + (91.8 - 520. i)T^{2} \)
29 \( 1 + (8.37 - 23.0i)T + (-644. - 540. i)T^{2} \)
31 \( 1 + (49.2 - 28.4i)T + (480.5 - 832. i)T^{2} \)
37 \( 1 + 0.192iT - 1.36e3T^{2} \)
41 \( 1 + (47.4 + 8.35i)T + (1.57e3 + 574. i)T^{2} \)
43 \( 1 + (34.4 + 28.9i)T + (321. + 1.82e3i)T^{2} \)
47 \( 1 + (-78.2 - 28.4i)T + (1.69e3 + 1.41e3i)T^{2} \)
53 \( 1 + (-3.39 - 4.04i)T + (-487. + 2.76e3i)T^{2} \)
59 \( 1 + (-35.4 - 97.3i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (22.3 - 18.7i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (-22.5 + 62.0i)T + (-3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (-27.8 + 33.2i)T + (-875. - 4.96e3i)T^{2} \)
73 \( 1 + (-9.20 + 52.1i)T + (-5.00e3 - 1.82e3i)T^{2} \)
79 \( 1 + (-147. - 26.0i)T + (5.86e3 + 2.13e3i)T^{2} \)
83 \( 1 + (-51.2 - 88.7i)T + (-3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 + (62.9 - 11.0i)T + (7.44e3 - 2.70e3i)T^{2} \)
97 \( 1 + (-0.285 - 0.784i)T + (-7.20e3 + 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.17306169841697812930440172515, −14.13532537701901170611377232190, −13.74040132273895889986100241450, −12.33261987739764643606423014803, −10.41045202740282620522651515338, −9.074712733038645806053559019532, −7.60902838816269494259208831713, −6.85799364219773847079648535291, −5.23348618662287527584763624831, −3.66226997979550217683813267279, 2.16261767334825764169361479926, 3.51769391190645272022126571318, 5.27989976710883930163508806610, 7.43059752315182823387163048338, 9.369179587630288863187645002256, 9.904432767023276147754862543171, 11.59563099991925654771308281795, 12.39339911019286593627020898783, 13.17183175534205485005999784131, 14.44952043903756601917232066607

Graph of the $Z$-function along the critical line