Properties

Label 2-47-1.1-c19-0-49
Degree $2$
Conductor $47$
Sign $-1$
Analytic cond. $107.543$
Root an. cond. $10.3703$
Motivic weight $19$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 891.·2-s − 6.29e4·3-s + 2.69e5·4-s + 4.92e6·5-s + 5.61e7·6-s + 6.71e7·7-s + 2.26e8·8-s + 2.80e9·9-s − 4.38e9·10-s + 9.30e9·11-s − 1.69e10·12-s − 2.54e10·13-s − 5.98e10·14-s − 3.10e11·15-s − 3.43e11·16-s + 5.11e11·17-s − 2.49e12·18-s − 2.09e11·19-s + 1.32e12·20-s − 4.22e12·21-s − 8.28e12·22-s + 1.57e12·23-s − 1.42e13·24-s + 5.18e12·25-s + 2.26e13·26-s − 1.03e14·27-s + 1.81e13·28-s + ⋯
L(s)  = 1  − 1.23·2-s − 1.84·3-s + 0.514·4-s + 1.12·5-s + 2.27·6-s + 0.629·7-s + 0.597·8-s + 2.41·9-s − 1.38·10-s + 1.18·11-s − 0.949·12-s − 0.665·13-s − 0.774·14-s − 2.08·15-s − 1.24·16-s + 1.04·17-s − 2.96·18-s − 0.148·19-s + 0.580·20-s − 1.16·21-s − 1.46·22-s + 0.182·23-s − 1.10·24-s + 0.271·25-s + 0.819·26-s − 2.60·27-s + 0.323·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47 ^{s/2} \, \Gamma_{\C}(s+19/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47\)
Sign: $-1$
Analytic conductor: \(107.543\)
Root analytic conductor: \(10.3703\)
Motivic weight: \(19\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47,\ (\ :19/2),\ -1)\)

Particular Values

\(L(10)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{21}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad47 \( 1 - 1.11e15T \)
good2 \( 1 + 891.T + 5.24e5T^{2} \)
3 \( 1 + 6.29e4T + 1.16e9T^{2} \)
5 \( 1 - 4.92e6T + 1.90e13T^{2} \)
7 \( 1 - 6.71e7T + 1.13e16T^{2} \)
11 \( 1 - 9.30e9T + 6.11e19T^{2} \)
13 \( 1 + 2.54e10T + 1.46e21T^{2} \)
17 \( 1 - 5.11e11T + 2.39e23T^{2} \)
19 \( 1 + 2.09e11T + 1.97e24T^{2} \)
23 \( 1 - 1.57e12T + 7.46e25T^{2} \)
29 \( 1 + 1.51e14T + 6.10e27T^{2} \)
31 \( 1 - 1.23e14T + 2.16e28T^{2} \)
37 \( 1 - 1.34e15T + 6.24e29T^{2} \)
41 \( 1 + 1.43e15T + 4.39e30T^{2} \)
43 \( 1 + 1.93e15T + 1.08e31T^{2} \)
53 \( 1 + 3.32e16T + 5.77e32T^{2} \)
59 \( 1 + 2.53e16T + 4.42e33T^{2} \)
61 \( 1 - 9.80e16T + 8.34e33T^{2} \)
67 \( 1 + 4.03e17T + 4.95e34T^{2} \)
71 \( 1 + 6.08e17T + 1.49e35T^{2} \)
73 \( 1 - 1.75e17T + 2.53e35T^{2} \)
79 \( 1 - 4.37e17T + 1.13e36T^{2} \)
83 \( 1 + 5.43e17T + 2.90e36T^{2} \)
89 \( 1 - 1.57e18T + 1.09e37T^{2} \)
97 \( 1 + 7.82e18T + 5.60e37T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07173150861023352398581586618, −9.996007658021846071190434675350, −9.427403214728734977108411816881, −7.64945550969411729829753594476, −6.50277570660392258026404157116, −5.51062670243815946887568166876, −4.45542966618909289180438483374, −1.70554759416709292188934574019, −1.17096333016757547339614213004, 0, 1.17096333016757547339614213004, 1.70554759416709292188934574019, 4.45542966618909289180438483374, 5.51062670243815946887568166876, 6.50277570660392258026404157116, 7.64945550969411729829753594476, 9.427403214728734977108411816881, 9.996007658021846071190434675350, 11.07173150861023352398581586618

Graph of the $Z$-function along the critical line