Properties

Label 2-47-1.1-c19-0-39
Degree $2$
Conductor $47$
Sign $-1$
Analytic cond. $107.543$
Root an. cond. $10.3703$
Motivic weight $19$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 849.·2-s − 2.99e3·3-s + 1.97e5·4-s + 3.98e6·5-s + 2.54e6·6-s − 1.37e8·7-s + 2.77e8·8-s − 1.15e9·9-s − 3.38e9·10-s + 7.54e9·11-s − 5.90e8·12-s + 6.89e9·13-s + 1.17e11·14-s − 1.19e10·15-s − 3.39e11·16-s + 4.82e11·17-s + 9.79e11·18-s − 1.83e11·19-s + 7.86e11·20-s + 4.13e11·21-s − 6.41e12·22-s − 9.91e12·23-s − 8.31e11·24-s − 3.21e12·25-s − 5.86e12·26-s + 6.93e12·27-s − 2.72e13·28-s + ⋯
L(s)  = 1  − 1.17·2-s − 0.0878·3-s + 0.376·4-s + 0.911·5-s + 0.103·6-s − 1.29·7-s + 0.731·8-s − 0.992·9-s − 1.06·10-s + 0.965·11-s − 0.0330·12-s + 0.180·13-s + 1.51·14-s − 0.0800·15-s − 1.23·16-s + 0.987·17-s + 1.16·18-s − 0.130·19-s + 0.343·20-s + 0.113·21-s − 1.13·22-s − 1.14·23-s − 0.0642·24-s − 0.168·25-s − 0.211·26-s + 0.174·27-s − 0.486·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47 ^{s/2} \, \Gamma_{\C}(s+19/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47\)
Sign: $-1$
Analytic conductor: \(107.543\)
Root analytic conductor: \(10.3703\)
Motivic weight: \(19\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47,\ (\ :19/2),\ -1)\)

Particular Values

\(L(10)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{21}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad47 \( 1 - 1.11e15T \)
good2 \( 1 + 849.T + 5.24e5T^{2} \)
3 \( 1 + 2.99e3T + 1.16e9T^{2} \)
5 \( 1 - 3.98e6T + 1.90e13T^{2} \)
7 \( 1 + 1.37e8T + 1.13e16T^{2} \)
11 \( 1 - 7.54e9T + 6.11e19T^{2} \)
13 \( 1 - 6.89e9T + 1.46e21T^{2} \)
17 \( 1 - 4.82e11T + 2.39e23T^{2} \)
19 \( 1 + 1.83e11T + 1.97e24T^{2} \)
23 \( 1 + 9.91e12T + 7.46e25T^{2} \)
29 \( 1 - 6.02e13T + 6.10e27T^{2} \)
31 \( 1 + 2.43e14T + 2.16e28T^{2} \)
37 \( 1 - 1.46e15T + 6.24e29T^{2} \)
41 \( 1 + 2.00e15T + 4.39e30T^{2} \)
43 \( 1 - 5.85e15T + 1.08e31T^{2} \)
53 \( 1 - 2.63e15T + 5.77e32T^{2} \)
59 \( 1 + 5.46e16T + 4.42e33T^{2} \)
61 \( 1 - 2.89e15T + 8.34e33T^{2} \)
67 \( 1 - 3.43e17T + 4.95e34T^{2} \)
71 \( 1 - 4.77e17T + 1.49e35T^{2} \)
73 \( 1 + 2.85e17T + 2.53e35T^{2} \)
79 \( 1 - 1.47e18T + 1.13e36T^{2} \)
83 \( 1 - 3.20e18T + 2.90e36T^{2} \)
89 \( 1 + 5.83e18T + 1.09e37T^{2} \)
97 \( 1 - 1.34e18T + 5.60e37T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85628780376199305973556638222, −9.660229179788849009159157696404, −9.319369183791232800942398641682, −8.023646832086530050762550892997, −6.54491001634865161555680305481, −5.69153688790686677776658445896, −3.76968513733445328148221736814, −2.34395008794105508708464011153, −1.06227904799503313914833889579, 0, 1.06227904799503313914833889579, 2.34395008794105508708464011153, 3.76968513733445328148221736814, 5.69153688790686677776658445896, 6.54491001634865161555680305481, 8.023646832086530050762550892997, 9.319369183791232800942398641682, 9.660229179788849009159157696404, 10.85628780376199305973556638222

Graph of the $Z$-function along the critical line