Properties

Label 2-3e2-9.4-c9-0-7
Degree $2$
Conductor $9$
Sign $-0.509 - 0.860i$
Analytic cond. $4.63532$
Root an. cond. $2.15297$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−12.8 − 22.2i)2-s + (−90.7 − 106. i)3-s + (−73.0 + 126. i)4-s + (−353. + 611. i)5-s + (−1.21e3 + 3.38e3i)6-s + (2.28e3 + 3.95e3i)7-s − 9.38e3·8-s + (−3.19e3 + 1.94e4i)9-s + 1.81e4·10-s + (−3.57e4 − 6.18e4i)11-s + (2.01e4 − 3.67e3i)12-s + (1.32e4 − 2.28e4i)13-s + (5.85e4 − 1.01e5i)14-s + (9.75e4 − 1.77e4i)15-s + (1.57e5 + 2.73e5i)16-s − 3.14e5·17-s + ⋯
L(s)  = 1  + (−0.566 − 0.981i)2-s + (−0.647 − 0.762i)3-s + (−0.142 + 0.247i)4-s + (−0.252 + 0.437i)5-s + (−0.381 + 1.06i)6-s + (0.359 + 0.622i)7-s − 0.810·8-s + (−0.162 + 0.986i)9-s + 0.573·10-s + (−0.735 − 1.27i)11-s + (0.280 − 0.0511i)12-s + (0.128 − 0.222i)13-s + (0.407 − 0.706i)14-s + (0.497 − 0.0906i)15-s + (0.601 + 1.04i)16-s − 0.914·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.509 - 0.860i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.509 - 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $-0.509 - 0.860i$
Analytic conductor: \(4.63532\)
Root analytic conductor: \(2.15297\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{9} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :9/2),\ -0.509 - 0.860i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.139877 + 0.245538i\)
\(L(\frac12)\) \(\approx\) \(0.139877 + 0.245538i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (90.7 + 106. i)T \)
good2 \( 1 + (12.8 + 22.2i)T + (-256 + 443. i)T^{2} \)
5 \( 1 + (353. - 611. i)T + (-9.76e5 - 1.69e6i)T^{2} \)
7 \( 1 + (-2.28e3 - 3.95e3i)T + (-2.01e7 + 3.49e7i)T^{2} \)
11 \( 1 + (3.57e4 + 6.18e4i)T + (-1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + (-1.32e4 + 2.28e4i)T + (-5.30e9 - 9.18e9i)T^{2} \)
17 \( 1 + 3.14e5T + 1.18e11T^{2} \)
19 \( 1 + 9.04e5T + 3.22e11T^{2} \)
23 \( 1 + (-5.59e4 + 9.68e4i)T + (-9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + (2.19e6 + 3.80e6i)T + (-7.25e12 + 1.25e13i)T^{2} \)
31 \( 1 + (-4.94e6 + 8.56e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + 6.32e6T + 1.29e14T^{2} \)
41 \( 1 + (2.68e6 - 4.64e6i)T + (-1.63e14 - 2.83e14i)T^{2} \)
43 \( 1 + (1.12e7 + 1.94e7i)T + (-2.51e14 + 4.35e14i)T^{2} \)
47 \( 1 + (-2.23e7 - 3.87e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + 4.00e7T + 3.29e15T^{2} \)
59 \( 1 + (-4.79e7 + 8.29e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (1.01e7 + 1.75e7i)T + (-5.84e15 + 1.01e16i)T^{2} \)
67 \( 1 + (9.12e7 - 1.58e8i)T + (-1.36e16 - 2.35e16i)T^{2} \)
71 \( 1 - 1.38e8T + 4.58e16T^{2} \)
73 \( 1 + 2.17e8T + 5.88e16T^{2} \)
79 \( 1 + (1.97e8 + 3.41e8i)T + (-5.99e16 + 1.03e17i)T^{2} \)
83 \( 1 + (-2.36e8 - 4.09e8i)T + (-9.34e16 + 1.61e17i)T^{2} \)
89 \( 1 - 2.60e8T + 3.50e17T^{2} \)
97 \( 1 + (2.87e8 + 4.97e8i)T + (-3.80e17 + 6.58e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.76026756234719257497234031171, −17.34254026432992826975471527857, −15.31861336998794459132681244094, −13.12791857506404652732046385606, −11.53041547659758222060810080481, −10.75827984950997250322471830419, −8.407181040429168640871681941960, −6.04610767527301754161709023430, −2.34636611506032936189145138441, −0.22301760536578800875679956916, 4.66616977776350690224064257483, 6.83901750814888482421220081455, 8.690535790972845654550945726360, 10.50904406057471169578365888840, 12.39372023266760880336534526809, 14.94871558638329035373088018842, 15.97237557396940374630601714750, 17.11713670221573348764625582796, 17.95941704426974621418917302378, 20.29031895492168728176722207886

Graph of the $Z$-function along the critical line