Properties

Label 2-3e2-1.1-c13-0-1
Degree $2$
Conductor $9$
Sign $1$
Analytic cond. $9.65078$
Root an. cond. $3.10657$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·2-s − 8.04e3·4-s + 3.02e4·5-s + 2.35e5·7-s − 1.94e5·8-s + 3.62e5·10-s + 1.11e7·11-s + 8.04e6·13-s + 2.82e6·14-s + 6.35e7·16-s + 1.17e8·17-s − 2.14e8·19-s − 2.43e8·20-s + 1.34e8·22-s − 8.30e8·23-s − 3.08e8·25-s + 9.65e7·26-s − 1.89e9·28-s + 1.25e9·29-s + 6.15e9·31-s + 2.35e9·32-s + 1.40e9·34-s + 7.10e9·35-s − 5.49e9·37-s − 2.56e9·38-s − 5.88e9·40-s + 4.67e9·41-s + ⋯
L(s)  = 1  + 0.132·2-s − 0.982·4-s + 0.864·5-s + 0.755·7-s − 0.262·8-s + 0.114·10-s + 1.90·11-s + 0.462·13-s + 0.100·14-s + 0.947·16-s + 1.18·17-s − 1.04·19-s − 0.849·20-s + 0.252·22-s − 1.16·23-s − 0.252·25-s + 0.0613·26-s − 0.741·28-s + 0.390·29-s + 1.24·31-s + 0.388·32-s + 0.156·34-s + 0.653·35-s − 0.352·37-s − 0.138·38-s − 0.227·40-s + 0.153·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $1$
Analytic conductor: \(9.65078\)
Root analytic conductor: \(3.10657\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(1.971306818\)
\(L(\frac12)\) \(\approx\) \(1.971306818\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 3 p^{2} T + p^{13} T^{2} \)
5 \( 1 - 6042 p T + p^{13} T^{2} \)
7 \( 1 - 33584 p T + p^{13} T^{2} \)
11 \( 1 - 1016628 p T + p^{13} T^{2} \)
13 \( 1 - 8049614 T + p^{13} T^{2} \)
17 \( 1 - 117494622 T + p^{13} T^{2} \)
19 \( 1 + 214061380 T + p^{13} T^{2} \)
23 \( 1 + 830555544 T + p^{13} T^{2} \)
29 \( 1 - 1252400250 T + p^{13} T^{2} \)
31 \( 1 - 6159350552 T + p^{13} T^{2} \)
37 \( 1 + 5498191402 T + p^{13} T^{2} \)
41 \( 1 - 4678687878 T + p^{13} T^{2} \)
43 \( 1 - 7115013764 T + p^{13} T^{2} \)
47 \( 1 - 29528776992 T + p^{13} T^{2} \)
53 \( 1 - 204125042466 T + p^{13} T^{2} \)
59 \( 1 - 29909821020 T + p^{13} T^{2} \)
61 \( 1 + 134392006738 T + p^{13} T^{2} \)
67 \( 1 - 348518801948 T + p^{13} T^{2} \)
71 \( 1 + 1314335409192 T + p^{13} T^{2} \)
73 \( 1 + 1178875922326 T + p^{13} T^{2} \)
79 \( 1 + 1072420659640 T + p^{13} T^{2} \)
83 \( 1 + 1124025139644 T + p^{13} T^{2} \)
89 \( 1 + 2235610909530 T + p^{13} T^{2} \)
97 \( 1 + 14215257165502 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.82361620189912140668522734249, −17.00302592986511598427319797782, −14.56381489529549369299404750502, −13.80819319585527486474627940091, −12.03921415167225390926982532099, −9.917920566413862741205682426969, −8.539747571839608944594943159390, −5.98566730249957353943830802997, −4.13943554132366905260912451026, −1.34421592758801776211863070896, 1.34421592758801776211863070896, 4.13943554132366905260912451026, 5.98566730249957353943830802997, 8.539747571839608944594943159390, 9.917920566413862741205682426969, 12.03921415167225390926982532099, 13.80819319585527486474627940091, 14.56381489529549369299404750502, 17.00302592986511598427319797782, 17.82361620189912140668522734249

Graph of the $Z$-function along the critical line