Properties

Label 2-344-344.101-c1-0-15
Degree $2$
Conductor $344$
Sign $0.503 - 0.863i$
Analytic cond. $2.74685$
Root an. cond. $1.65736$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.26 + 0.633i)2-s + (2.28 + 0.895i)3-s + (1.19 − 1.60i)4-s + (2.72 − 0.204i)5-s + (−3.45 + 0.312i)6-s + (−0.893 + 1.54i)7-s + (−0.499 + 2.78i)8-s + (2.20 + 2.04i)9-s + (−3.31 + 1.98i)10-s + (−3.16 − 0.722i)11-s + (4.16 − 2.58i)12-s + (2.99 + 4.39i)13-s + (0.149 − 2.52i)14-s + (6.39 + 1.97i)15-s + (−1.13 − 3.83i)16-s + (−0.00441 + 0.0588i)17-s + ⋯
L(s)  = 1  + (−0.894 + 0.447i)2-s + (1.31 + 0.516i)3-s + (0.598 − 0.800i)4-s + (1.21 − 0.0912i)5-s + (−1.40 + 0.127i)6-s + (−0.337 + 0.584i)7-s + (−0.176 + 0.984i)8-s + (0.733 + 0.680i)9-s + (−1.04 + 0.626i)10-s + (−0.954 − 0.217i)11-s + (1.20 − 0.745i)12-s + (0.831 + 1.21i)13-s + (0.0399 − 0.674i)14-s + (1.65 + 0.508i)15-s + (−0.282 − 0.959i)16-s + (−0.00106 + 0.0142i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.503 - 0.863i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.503 - 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(344\)    =    \(2^{3} \cdot 43\)
Sign: $0.503 - 0.863i$
Analytic conductor: \(2.74685\)
Root analytic conductor: \(1.65736\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{344} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 344,\ (\ :1/2),\ 0.503 - 0.863i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.32995 + 0.763820i\)
\(L(\frac12)\) \(\approx\) \(1.32995 + 0.763820i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.26 - 0.633i)T \)
43 \( 1 + (-3.42 - 5.59i)T \)
good3 \( 1 + (-2.28 - 0.895i)T + (2.19 + 2.04i)T^{2} \)
5 \( 1 + (-2.72 + 0.204i)T + (4.94 - 0.745i)T^{2} \)
7 \( 1 + (0.893 - 1.54i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (3.16 + 0.722i)T + (9.91 + 4.77i)T^{2} \)
13 \( 1 + (-2.99 - 4.39i)T + (-4.74 + 12.1i)T^{2} \)
17 \( 1 + (0.00441 - 0.0588i)T + (-16.8 - 2.53i)T^{2} \)
19 \( 1 + (4.92 + 5.30i)T + (-1.41 + 18.9i)T^{2} \)
23 \( 1 + (-9.09 + 2.80i)T + (19.0 - 12.9i)T^{2} \)
29 \( 1 + (-1.16 + 0.458i)T + (21.2 - 19.7i)T^{2} \)
31 \( 1 + (4.44 + 0.670i)T + (29.6 + 9.13i)T^{2} \)
37 \( 1 + (4.92 - 2.84i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.62 + 2.03i)T + (-9.12 - 39.9i)T^{2} \)
47 \( 1 + (2.35 + 10.2i)T + (-42.3 + 20.3i)T^{2} \)
53 \( 1 + (3.92 - 5.76i)T + (-19.3 - 49.3i)T^{2} \)
59 \( 1 + (1.51 + 3.14i)T + (-36.7 + 46.1i)T^{2} \)
61 \( 1 + (0.727 + 4.82i)T + (-58.2 + 17.9i)T^{2} \)
67 \( 1 + (6.03 + 6.49i)T + (-5.00 + 66.8i)T^{2} \)
71 \( 1 + (-7.25 - 2.23i)T + (58.6 + 39.9i)T^{2} \)
73 \( 1 + (-0.179 + 0.122i)T + (26.6 - 67.9i)T^{2} \)
79 \( 1 + (3.48 - 6.02i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (9.89 + 3.88i)T + (60.8 + 56.4i)T^{2} \)
89 \( 1 + (-5.37 + 13.7i)T + (-65.2 - 60.5i)T^{2} \)
97 \( 1 + (1.67 - 7.31i)T + (-87.3 - 42.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16483405939146414253609179431, −10.42656006340434067963676152061, −9.324578396103919691464683527252, −9.041327015536538938277180377361, −8.395291692023113045480196009702, −6.96367910991092556760754594256, −6.05501056821396256067217706233, −4.83285873489004449226579161190, −2.88500586644836759927960579687, −2.02297464033747303787260338849, 1.50564972499030729794091540065, 2.64235599680328125741661918995, 3.53287418902811619369587466711, 5.71729094714372029463017624727, 6.97664191266334143188723267548, 7.82677581810518801193097843918, 8.621357661399573063295989941509, 9.436538531195308807000346044683, 10.38528504114019997152452299875, 10.81039564998334989172131556558

Graph of the $Z$-function along the critical line