Properties

Label 2-26-13.11-c4-0-2
Degree $2$
Conductor $26$
Sign $-0.287 + 0.957i$
Analytic cond. $2.68761$
Root an. cond. $1.63939$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.732 + 2.73i)2-s + (−4.74 − 8.22i)3-s + (−6.92 − 4i)4-s + (−19.2 − 19.2i)5-s + (25.9 − 6.95i)6-s + (−5.11 − 19.0i)7-s + (16 − 15.9i)8-s + (−4.58 + 7.94i)9-s + (66.6 − 38.4i)10-s + (−31.7 − 8.51i)11-s + 75.9i·12-s + (−94.3 + 140. i)13-s + 55.8·14-s + (−66.8 + 249. i)15-s + (31.9 + 55.4i)16-s + (−186. − 107. i)17-s + ⋯
L(s)  = 1  + (−0.183 + 0.683i)2-s + (−0.527 − 0.913i)3-s + (−0.433 − 0.250i)4-s + (−0.769 − 0.769i)5-s + (0.720 − 0.193i)6-s + (−0.104 − 0.389i)7-s + (0.250 − 0.249i)8-s + (−0.0566 + 0.0980i)9-s + (0.666 − 0.384i)10-s + (−0.262 − 0.0704i)11-s + 0.527i·12-s + (−0.558 + 0.829i)13-s + 0.285·14-s + (−0.297 + 1.10i)15-s + (0.124 + 0.216i)16-s + (−0.644 − 0.371i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.287 + 0.957i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.287 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $-0.287 + 0.957i$
Analytic conductor: \(2.68761\)
Root analytic conductor: \(1.63939\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{26} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :2),\ -0.287 + 0.957i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.380795 - 0.511956i\)
\(L(\frac12)\) \(\approx\) \(0.380795 - 0.511956i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.732 - 2.73i)T \)
13 \( 1 + (94.3 - 140. i)T \)
good3 \( 1 + (4.74 + 8.22i)T + (-40.5 + 70.1i)T^{2} \)
5 \( 1 + (19.2 + 19.2i)T + 625iT^{2} \)
7 \( 1 + (5.11 + 19.0i)T + (-2.07e3 + 1.20e3i)T^{2} \)
11 \( 1 + (31.7 + 8.51i)T + (1.26e4 + 7.32e3i)T^{2} \)
17 \( 1 + (186. + 107. i)T + (4.17e4 + 7.23e4i)T^{2} \)
19 \( 1 + (-407. + 109. i)T + (1.12e5 - 6.51e4i)T^{2} \)
23 \( 1 + (-833. + 481. i)T + (1.39e5 - 2.42e5i)T^{2} \)
29 \( 1 + (772. + 1.33e3i)T + (-3.53e5 + 6.12e5i)T^{2} \)
31 \( 1 + (-750. - 750. i)T + 9.23e5iT^{2} \)
37 \( 1 + (-680. - 182. i)T + (1.62e6 + 9.37e5i)T^{2} \)
41 \( 1 + (-146. + 548. i)T + (-2.44e6 - 1.41e6i)T^{2} \)
43 \( 1 + (141. + 81.8i)T + (1.70e6 + 2.96e6i)T^{2} \)
47 \( 1 + (1.73e3 - 1.73e3i)T - 4.87e6iT^{2} \)
53 \( 1 + 4.53e3T + 7.89e6T^{2} \)
59 \( 1 + (201. + 752. i)T + (-1.04e7 + 6.05e6i)T^{2} \)
61 \( 1 + (1.97e3 - 3.41e3i)T + (-6.92e6 - 1.19e7i)T^{2} \)
67 \( 1 + (-1.78e3 + 6.65e3i)T + (-1.74e7 - 1.00e7i)T^{2} \)
71 \( 1 + (-5.33e3 + 1.42e3i)T + (2.20e7 - 1.27e7i)T^{2} \)
73 \( 1 + (2.49e3 - 2.49e3i)T - 2.83e7iT^{2} \)
79 \( 1 - 6.71e3T + 3.89e7T^{2} \)
83 \( 1 + (-1.36e3 - 1.36e3i)T + 4.74e7iT^{2} \)
89 \( 1 + (-6.03e3 - 1.61e3i)T + (5.43e7 + 3.13e7i)T^{2} \)
97 \( 1 + (4.67e3 - 1.25e3i)T + (7.66e7 - 4.42e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.49406579630601334280714780814, −15.36258230643681257444628228609, −13.69252869103118036563249607261, −12.57079597549077315455729758681, −11.43150256968859523275556317124, −9.310413588766681391567685209486, −7.73909223021353065904058039495, −6.66507814418906343841553378425, −4.71756580313311405627036434338, −0.59049342268376283141833400199, 3.30550417893922167901907340829, 5.13260098668042408151671593155, 7.57014967056757253442461289059, 9.499526694989230731260494837712, 10.73859210779971136293303180361, 11.48804824714714505828700896385, 12.99761141444058179631494732739, 14.92170419826579683270852527364, 15.72630762598155197559649682280, 17.09969270189128609506678438254

Graph of the $Z$-function along the critical line