Properties

Label 2-211-211.102-c2-0-18
Degree $2$
Conductor $211$
Sign $0.588 + 0.808i$
Analytic cond. $5.74933$
Root an. cond. $2.39777$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.70 − 1.45i)2-s + (−0.133 + 0.127i)3-s + (3.00 + 4.55i)4-s + (4.99 − 5.22i)5-s + (0.546 − 0.150i)6-s + (8.60 − 4.62i)7-s + (−0.400 − 4.45i)8-s + (−0.402 + 8.95i)9-s + (−21.1 + 6.87i)10-s + (1.95 + 14.4i)11-s + (−0.980 − 0.223i)12-s + (0.276 − 0.647i)13-s − 30.0·14-s + 1.33i·15-s + (3.16 − 7.41i)16-s + (10.4 + 11.9i)17-s + ⋯
L(s)  = 1  + (−1.35 − 0.728i)2-s + (−0.0444 + 0.0424i)3-s + (0.751 + 1.13i)4-s + (0.999 − 1.04i)5-s + (0.0911 − 0.0251i)6-s + (1.22 − 0.661i)7-s + (−0.0501 − 0.556i)8-s + (−0.0446 + 0.995i)9-s + (−2.11 + 0.687i)10-s + (0.177 + 1.31i)11-s + (−0.0817 − 0.0186i)12-s + (0.0212 − 0.0498i)13-s − 2.14·14-s + 0.0889i·15-s + (0.198 − 0.463i)16-s + (0.615 + 0.704i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 211 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.588 + 0.808i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 211 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.588 + 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(211\)
Sign: $0.588 + 0.808i$
Analytic conductor: \(5.74933\)
Root analytic conductor: \(2.39777\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{211} (102, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 211,\ (\ :1),\ 0.588 + 0.808i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.949548 - 0.483401i\)
\(L(\frac12)\) \(\approx\) \(0.949548 - 0.483401i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad211 \( 1 + (-101. - 184. i)T \)
good2 \( 1 + (2.70 + 1.45i)T + (2.20 + 3.33i)T^{2} \)
3 \( 1 + (0.133 - 0.127i)T + (0.403 - 8.99i)T^{2} \)
5 \( 1 + (-4.99 + 5.22i)T + (-1.12 - 24.9i)T^{2} \)
7 \( 1 + (-8.60 + 4.62i)T + (26.9 - 40.8i)T^{2} \)
11 \( 1 + (-1.95 - 14.4i)T + (-116. + 32.1i)T^{2} \)
13 \( 1 + (-0.276 + 0.647i)T + (-116. - 122. i)T^{2} \)
17 \( 1 + (-10.4 - 11.9i)T + (-38.7 + 286. i)T^{2} \)
19 \( 1 + (-24.4 - 17.7i)T + (111. + 343. i)T^{2} \)
23 \( 1 + (17.6 + 24.3i)T + (-163. + 503. i)T^{2} \)
29 \( 1 + (1.69 + 0.723i)T + (581. + 607. i)T^{2} \)
31 \( 1 + (-16.9 - 3.87i)T + (865. + 416. i)T^{2} \)
37 \( 1 + (-5.30 + 39.1i)T + (-1.31e3 - 364. i)T^{2} \)
41 \( 1 + (9.35 - 15.6i)T + (-796. - 1.48e3i)T^{2} \)
43 \( 1 + (-14.1 + 61.8i)T + (-1.66e3 - 802. i)T^{2} \)
47 \( 1 + (-1.28 - 28.6i)T + (-2.20e3 + 198. i)T^{2} \)
53 \( 1 + (11.4 - 17.3i)T + (-1.10e3 - 2.58e3i)T^{2} \)
59 \( 1 + (59.3 + 35.4i)T + (1.64e3 + 3.06e3i)T^{2} \)
61 \( 1 + (-25.9 + 8.41i)T + (3.01e3 - 2.18e3i)T^{2} \)
67 \( 1 + (47.0 - 97.6i)T + (-2.79e3 - 3.50e3i)T^{2} \)
71 \( 1 + (36.7 + 113. i)T + (-4.07e3 + 2.96e3i)T^{2} \)
73 \( 1 + (-18.9 + 23.7i)T + (-1.18e3 - 5.19e3i)T^{2} \)
79 \( 1 + (71.8 + 6.46i)T + (6.14e3 + 1.11e3i)T^{2} \)
83 \( 1 + (-35.6 + 109. i)T + (-5.57e3 - 4.04e3i)T^{2} \)
89 \( 1 + (14.6 - 80.6i)T + (-7.41e3 - 2.78e3i)T^{2} \)
97 \( 1 + (23.8 - 63.6i)T + (-7.08e3 - 6.19e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.84482306539070066211556776916, −10.54908030759764680615564000877, −10.15149391459034268675120333774, −9.196599220362013027582814603696, −8.108877119939050162908030737288, −7.58031562968499360377810050658, −5.50682370864675230918194774997, −4.52176913688861500839721514434, −2.00996913575753212211465877381, −1.34211835075676048149077171885, 1.23734861625275467521259759251, 3.04308663835287123167211373239, 5.53118026697560371854872500483, 6.27174208249355933405550659900, 7.32453860871886267687271126406, 8.348537274447769471027581173917, 9.317782934167198148401728744897, 9.927030384253487376911875304376, 11.19877714395607869829068819095, 11.73689272505274783698814418686

Graph of the $Z$-function along the critical line