Properties

Label 2-150-25.11-c3-0-10
Degree $2$
Conductor $150$
Sign $-0.00916 + 0.999i$
Analytic cond. $8.85028$
Root an. cond. $2.97494$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.61 − 1.17i)2-s + (−0.927 + 2.85i)3-s + (1.23 − 3.80i)4-s + (−9.59 − 5.73i)5-s + (1.85 + 5.70i)6-s + 16.3·7-s + (−2.47 − 7.60i)8-s + (−7.28 − 5.29i)9-s + (−22.2 + 2.00i)10-s + (52.6 − 38.2i)11-s + (9.70 + 7.05i)12-s + (−61.7 − 44.8i)13-s + (26.4 − 19.2i)14-s + (25.2 − 22.0i)15-s + (−12.9 − 9.40i)16-s + (−0.0248 − 0.0764i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s + (−0.178 + 0.549i)3-s + (0.154 − 0.475i)4-s + (−0.858 − 0.512i)5-s + (0.126 + 0.388i)6-s + 0.882·7-s + (−0.109 − 0.336i)8-s + (−0.269 − 0.195i)9-s + (−0.704 + 0.0633i)10-s + (1.44 − 1.04i)11-s + (0.233 + 0.169i)12-s + (−1.31 − 0.956i)13-s + (0.504 − 0.366i)14-s + (0.434 − 0.379i)15-s + (−0.202 − 0.146i)16-s + (−0.000354 − 0.00109i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00916 + 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.00916 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.00916 + 0.999i$
Analytic conductor: \(8.85028\)
Root analytic conductor: \(2.97494\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (61, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :3/2),\ -0.00916 + 0.999i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.29309 - 1.30499i\)
\(L(\frac12)\) \(\approx\) \(1.29309 - 1.30499i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.61 + 1.17i)T \)
3 \( 1 + (0.927 - 2.85i)T \)
5 \( 1 + (9.59 + 5.73i)T \)
good7 \( 1 - 16.3T + 343T^{2} \)
11 \( 1 + (-52.6 + 38.2i)T + (411. - 1.26e3i)T^{2} \)
13 \( 1 + (61.7 + 44.8i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (0.0248 + 0.0764i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (32.5 + 100. i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + (-110. + 80.1i)T + (3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (-16.5 + 51.0i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (-71.7 - 220. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (28.2 + 20.5i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-100. - 73.0i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 + 354.T + 7.95e4T^{2} \)
47 \( 1 + (103. - 319. i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-21.5 + 66.1i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (-473. - 343. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (-70.3 + 51.1i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + (-304. - 935. i)T + (-2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (-121. + 375. i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (-246. + 179. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (-410. + 1.26e3i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (22.4 + 69.0i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (158. - 115. i)T + (2.17e5 - 6.70e5i)T^{2} \)
97 \( 1 + (280. - 862. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06113016560150299557539729905, −11.44395794296530878436945542717, −10.62321531602922794462645091426, −9.186083257318429192753714303944, −8.287291122391800746838352952443, −6.79232916516171915392122691642, −5.15962635783719876407324933552, −4.46423535686434456839084514543, −3.10637400306728717529349400661, −0.800851020437518397832787938688, 1.93700546246199290578989953301, 3.90996664165465961173859937188, 4.92062727847272345778186399349, 6.64138610628825121990671658632, 7.24749537564010389914704612464, 8.235266043021047491041777191711, 9.695734084346847456271726007403, 11.34922781917058560426310045033, 11.85651471636499944673375279356, 12.58224803539727785904380028084

Graph of the $Z$-function along the critical line