Properties

Label 2-14e2-196.103-c1-0-15
Degree $2$
Conductor $196$
Sign $0.511 - 0.859i$
Analytic cond. $1.56506$
Root an. cond. $1.25102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.31 + 0.521i)2-s + (1.99 + 1.36i)3-s + (1.45 + 1.37i)4-s + (−3.52 − 0.263i)5-s + (1.91 + 2.83i)6-s + (−0.894 − 2.49i)7-s + (1.19 + 2.56i)8-s + (1.03 + 2.64i)9-s + (−4.49 − 2.18i)10-s + (1.94 + 0.762i)11-s + (1.03 + 4.71i)12-s + (3.29 − 2.63i)13-s + (0.123 − 3.73i)14-s + (−6.66 − 5.31i)15-s + (0.235 + 3.99i)16-s + (−4.67 − 5.03i)17-s + ⋯
L(s)  = 1  + (0.929 + 0.369i)2-s + (1.15 + 0.785i)3-s + (0.727 + 0.685i)4-s + (−1.57 − 0.117i)5-s + (0.781 + 1.15i)6-s + (−0.338 − 0.941i)7-s + (0.423 + 0.906i)8-s + (0.345 + 0.880i)9-s + (−1.41 − 0.690i)10-s + (0.586 + 0.230i)11-s + (0.299 + 1.36i)12-s + (0.914 − 0.729i)13-s + (0.0331 − 0.999i)14-s + (−1.72 − 1.37i)15-s + (0.0589 + 0.998i)16-s + (−1.13 − 1.22i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.511 - 0.859i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.511 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $0.511 - 0.859i$
Analytic conductor: \(1.56506\)
Root analytic conductor: \(1.25102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{196} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ 0.511 - 0.859i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.89994 + 1.08073i\)
\(L(\frac12)\) \(\approx\) \(1.89994 + 1.08073i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.31 - 0.521i)T \)
7 \( 1 + (0.894 + 2.49i)T \)
good3 \( 1 + (-1.99 - 1.36i)T + (1.09 + 2.79i)T^{2} \)
5 \( 1 + (3.52 + 0.263i)T + (4.94 + 0.745i)T^{2} \)
11 \( 1 + (-1.94 - 0.762i)T + (8.06 + 7.48i)T^{2} \)
13 \( 1 + (-3.29 + 2.63i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (4.67 + 5.03i)T + (-1.27 + 16.9i)T^{2} \)
19 \( 1 + (1.13 - 1.96i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.95 - 3.18i)T + (-1.71 - 22.9i)T^{2} \)
29 \( 1 + (0.804 + 3.52i)T + (-26.1 + 12.5i)T^{2} \)
31 \( 1 + (-0.522 - 0.905i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-0.119 - 0.0368i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (-5.49 - 11.4i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (0.195 - 0.406i)T + (-26.8 - 33.6i)T^{2} \)
47 \( 1 + (9.81 - 1.47i)T + (44.9 - 13.8i)T^{2} \)
53 \( 1 + (-1.10 + 0.341i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (0.155 + 2.07i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (-1.73 + 5.61i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (2.00 - 1.15i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-1.45 - 0.331i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (-0.522 + 3.46i)T + (-69.7 - 21.5i)T^{2} \)
79 \( 1 + (-7.95 - 4.59i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (6.92 - 8.68i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (1.23 - 0.485i)T + (65.2 - 60.5i)T^{2} \)
97 \( 1 + 3.25iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94423809700142168399295938801, −11.67963067263272082982012530423, −10.97774870043007400634196415115, −9.588330959991218150154823750292, −8.291090871065361058492578864605, −7.73679485864827948411724312202, −6.57204240817815326666156404001, −4.54881173436485479162934065992, −3.91382404010240853258263471049, −3.14500572035053713885529263497, 2.05899509072329416389171716453, 3.40908893145501325618741857395, 4.23149097462939467669374102864, 6.24553993337940453266145160771, 7.08626093352250745625130577600, 8.395823743007743606757106074792, 8.945961749356053296232393872618, 10.84642299028706191823214862326, 11.65030515843166889901318930493, 12.48699115673349279085764831139

Graph of the $Z$-function along the critical line