Properties

Label 2-135-135.122-c1-0-6
Degree $2$
Conductor $135$
Sign $-0.552 + 0.833i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.22 − 0.856i)2-s + (−1.44 + 0.960i)3-s + (0.0790 + 0.217i)4-s + (2.10 + 0.751i)5-s + (2.58 + 0.0591i)6-s + (−2.03 − 4.36i)7-s + (−0.683 + 2.55i)8-s + (1.15 − 2.76i)9-s + (−1.93 − 2.72i)10-s + (−2.25 − 2.68i)11-s + (−0.322 − 0.237i)12-s + (−2.18 − 3.11i)13-s + (−1.24 + 7.08i)14-s + (−3.75 + 0.940i)15-s + (3.37 − 2.83i)16-s + (−0.367 − 1.37i)17-s + ⋯
L(s)  = 1  + (−0.865 − 0.605i)2-s + (−0.832 + 0.554i)3-s + (0.0395 + 0.108i)4-s + (0.941 + 0.336i)5-s + (1.05 + 0.0241i)6-s + (−0.769 − 1.65i)7-s + (−0.241 + 0.902i)8-s + (0.384 − 0.923i)9-s + (−0.611 − 0.861i)10-s + (−0.678 − 0.808i)11-s + (−0.0931 − 0.0684i)12-s + (−0.605 − 0.864i)13-s + (−0.333 + 1.89i)14-s + (−0.970 + 0.242i)15-s + (0.844 − 0.708i)16-s + (−0.0891 − 0.332i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.552 + 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $-0.552 + 0.833i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (122, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1/2),\ -0.552 + 0.833i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.209053 - 0.389218i\)
\(L(\frac12)\) \(\approx\) \(0.209053 - 0.389218i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.44 - 0.960i)T \)
5 \( 1 + (-2.10 - 0.751i)T \)
good2 \( 1 + (1.22 + 0.856i)T + (0.684 + 1.87i)T^{2} \)
7 \( 1 + (2.03 + 4.36i)T + (-4.49 + 5.36i)T^{2} \)
11 \( 1 + (2.25 + 2.68i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (2.18 + 3.11i)T + (-4.44 + 12.2i)T^{2} \)
17 \( 1 + (0.367 + 1.37i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (-1.30 + 0.750i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.35 - 0.633i)T + (14.7 + 17.6i)T^{2} \)
29 \( 1 + (0.168 + 0.957i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (2.44 - 0.891i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-6.69 + 1.79i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (0.670 + 0.118i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (0.0175 - 0.200i)T + (-42.3 - 7.46i)T^{2} \)
47 \( 1 + (7.89 - 3.68i)T + (30.2 - 36.0i)T^{2} \)
53 \( 1 + (-2.81 - 2.81i)T + 53iT^{2} \)
59 \( 1 + (-5.69 - 4.77i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.08 + 0.396i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-12.5 + 8.79i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (11.1 + 6.42i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (0.343 + 0.0920i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (-9.66 + 1.70i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (-6.51 + 9.30i)T + (-28.3 - 77.9i)T^{2} \)
89 \( 1 + (-2.09 - 3.63i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-6.41 - 0.561i)T + (95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87309310447220393870300841959, −11.25218115997559787151504436886, −10.57225502143335961402772509149, −10.05201719856187033023279757175, −9.312717243223898322145925172027, −7.53443900699123125339637201891, −6.19928867247643370795496351900, −5.07564182306675690017528796047, −3.14138454009819792059573086498, −0.65174548838181377175803436618, 2.23797824045562869666834622090, 5.10796701003172046966929244417, 6.15215539600695234082545088488, 6.99900611996225882445074204498, 8.363619581543832011973128864123, 9.429012207850393120318511818402, 10.03042268412648054994845125573, 11.77550269078953250849766470943, 12.69887362373243967020733084090, 13.07435680624739674315046915435

Graph of the $Z$-function along the critical line