Properties

Label 2-135-135.113-c1-0-3
Degree $2$
Conductor $135$
Sign $0.967 - 0.251i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.576 − 0.0504i)2-s + (−1.73 − 0.0483i)3-s + (−1.63 − 0.289i)4-s + (2.18 + 0.474i)5-s + (0.996 + 0.115i)6-s + (2.78 + 1.94i)7-s + (2.05 + 0.549i)8-s + (2.99 + 0.167i)9-s + (−1.23 − 0.384i)10-s + (1.55 − 4.27i)11-s + (2.82 + 0.579i)12-s + (0.357 + 4.08i)13-s + (−1.50 − 1.26i)14-s + (−3.76 − 0.927i)15-s + (1.97 + 0.718i)16-s + (0.284 − 0.0763i)17-s + ⋯
L(s)  = 1  + (−0.407 − 0.0356i)2-s + (−0.999 − 0.0278i)3-s + (−0.819 − 0.144i)4-s + (0.977 + 0.212i)5-s + (0.406 + 0.0470i)6-s + (1.05 + 0.735i)7-s + (0.724 + 0.194i)8-s + (0.998 + 0.0557i)9-s + (−0.391 − 0.121i)10-s + (0.469 − 1.29i)11-s + (0.815 + 0.167i)12-s + (0.0990 + 1.13i)13-s + (−0.402 − 0.337i)14-s + (−0.970 − 0.239i)15-s + (0.493 + 0.179i)16-s + (0.0690 − 0.0185i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.251i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.967 - 0.251i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $0.967 - 0.251i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1/2),\ 0.967 - 0.251i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.734716 + 0.0938917i\)
\(L(\frac12)\) \(\approx\) \(0.734716 + 0.0938917i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.73 + 0.0483i)T \)
5 \( 1 + (-2.18 - 0.474i)T \)
good2 \( 1 + (0.576 + 0.0504i)T + (1.96 + 0.347i)T^{2} \)
7 \( 1 + (-2.78 - 1.94i)T + (2.39 + 6.57i)T^{2} \)
11 \( 1 + (-1.55 + 4.27i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (-0.357 - 4.08i)T + (-12.8 + 2.25i)T^{2} \)
17 \( 1 + (-0.284 + 0.0763i)T + (14.7 - 8.5i)T^{2} \)
19 \( 1 + (4.26 - 2.46i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.869 - 1.24i)T + (-7.86 + 21.6i)T^{2} \)
29 \( 1 + (-5.57 + 4.67i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.591 + 3.35i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-1.28 - 4.81i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + (2.42 - 2.89i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (4.02 + 8.63i)T + (-27.6 + 32.9i)T^{2} \)
47 \( 1 + (-1.09 + 1.56i)T + (-16.0 - 44.1i)T^{2} \)
53 \( 1 + (1.39 - 1.39i)T - 53iT^{2} \)
59 \( 1 + (9.34 - 3.40i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (0.249 + 1.41i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (9.46 - 0.827i)T + (65.9 - 11.6i)T^{2} \)
71 \( 1 + (-0.728 - 0.420i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.166 + 0.619i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (-9.56 - 11.3i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-0.830 + 9.49i)T + (-81.7 - 14.4i)T^{2} \)
89 \( 1 + (6.19 + 10.7i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (4.11 - 1.91i)T + (62.3 - 74.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44337390741762781310791637679, −12.03224547506982448632805755812, −11.16999541269960228817554125508, −10.22545344173753233448226557282, −9.140309155909118665399312845050, −8.261318151489478857314326218754, −6.42541140247425808333390930021, −5.56086963787555913609080910510, −4.42798481910687659664928397765, −1.59977034177561869579399049516, 1.31921066887543157482505360045, 4.48952747111282419838405414491, 5.09761598722200327164549661474, 6.67977728891823145432704002997, 7.88139468799491406267663638680, 9.175766394844387901448350210885, 10.27708354961034527784700250282, 10.74220175867077139756757169198, 12.38555451564025329329669321995, 13.00813183029887450136060802147

Graph of the $Z$-function along the critical line