Properties

Label 2-13-13.3-c11-0-4
Degree $2$
Conductor $13$
Sign $0.979 - 0.202i$
Analytic cond. $9.98846$
Root an. cond. $3.16045$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (22.3 + 38.7i)2-s + (−79.2 − 137. i)3-s + (25.1 − 43.5i)4-s + 2.00e3·5-s + (3.54e3 − 6.13e3i)6-s + (1.24e4 − 2.15e4i)7-s + 9.37e4·8-s + (7.60e4 − 1.31e5i)9-s + (4.47e4 + 7.75e4i)10-s + (1.74e5 + 3.02e5i)11-s − 7.96e3·12-s + (5.93e5 + 1.19e6i)13-s + 1.10e6·14-s + (−1.58e5 − 2.74e5i)15-s + (2.04e6 + 3.54e6i)16-s + (1.98e6 − 3.43e6i)17-s + ⋯
L(s)  = 1  + (0.493 + 0.855i)2-s + (−0.188 − 0.326i)3-s + (0.0122 − 0.0212i)4-s + 0.286·5-s + (0.185 − 0.322i)6-s + (0.279 − 0.483i)7-s + 1.01·8-s + (0.429 − 0.743i)9-s + (0.141 + 0.245i)10-s + (0.327 + 0.566i)11-s − 0.00924·12-s + (0.443 + 0.896i)13-s + 0.551·14-s + (−0.0539 − 0.0934i)15-s + (0.487 + 0.844i)16-s + (0.338 − 0.586i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $0.979 - 0.202i$
Analytic conductor: \(9.98846\)
Root analytic conductor: \(3.16045\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :11/2),\ 0.979 - 0.202i)\)

Particular Values

\(L(6)\) \(\approx\) \(2.56611 + 0.262656i\)
\(L(\frac12)\) \(\approx\) \(2.56611 + 0.262656i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-5.93e5 - 1.19e6i)T \)
good2 \( 1 + (-22.3 - 38.7i)T + (-1.02e3 + 1.77e3i)T^{2} \)
3 \( 1 + (79.2 + 137. i)T + (-8.85e4 + 1.53e5i)T^{2} \)
5 \( 1 - 2.00e3T + 4.88e7T^{2} \)
7 \( 1 + (-1.24e4 + 2.15e4i)T + (-9.88e8 - 1.71e9i)T^{2} \)
11 \( 1 + (-1.74e5 - 3.02e5i)T + (-1.42e11 + 2.47e11i)T^{2} \)
17 \( 1 + (-1.98e6 + 3.43e6i)T + (-1.71e13 - 2.96e13i)T^{2} \)
19 \( 1 + (-5.06e6 + 8.77e6i)T + (-5.82e13 - 1.00e14i)T^{2} \)
23 \( 1 + (5.19e6 + 9.00e6i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 + (2.76e7 + 4.78e7i)T + (-6.10e15 + 1.05e16i)T^{2} \)
31 \( 1 - 8.09e6T + 2.54e16T^{2} \)
37 \( 1 + (-9.15e7 - 1.58e8i)T + (-8.89e16 + 1.54e17i)T^{2} \)
41 \( 1 + (-2.15e8 - 3.73e8i)T + (-2.75e17 + 4.76e17i)T^{2} \)
43 \( 1 + (6.14e8 - 1.06e9i)T + (-4.64e17 - 8.04e17i)T^{2} \)
47 \( 1 + 1.28e9T + 2.47e18T^{2} \)
53 \( 1 + 1.46e9T + 9.26e18T^{2} \)
59 \( 1 + (1.95e9 - 3.38e9i)T + (-1.50e19 - 2.61e19i)T^{2} \)
61 \( 1 + (4.44e9 - 7.70e9i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (-5.05e9 - 8.75e9i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 + (-1.11e10 + 1.92e10i)T + (-1.15e20 - 2.00e20i)T^{2} \)
73 \( 1 - 6.82e9T + 3.13e20T^{2} \)
79 \( 1 + 2.83e10T + 7.47e20T^{2} \)
83 \( 1 + 6.54e10T + 1.28e21T^{2} \)
89 \( 1 + (1.50e9 + 2.60e9i)T + (-1.38e21 + 2.40e21i)T^{2} \)
97 \( 1 + (-7.72e10 + 1.33e11i)T + (-3.57e21 - 6.19e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.01147656742875712929100385999, −15.70679282218071806214427997757, −14.43611154192166666450444730007, −13.34238376468796824845007397651, −11.55620715705912845246991118408, −9.693640117091080516626036670789, −7.36352320841354421047978873745, −6.26325135025077121469974114282, −4.43923855432155068821131285275, −1.35768454606050820025220099945, 1.75363175585045025372324478029, 3.62107549646566596050601162520, 5.46877892162314839961083875867, 7.982687482863965264319638163376, 10.17326947513392601238775425711, 11.33535093830585659732378589476, 12.70495317687172909131563180666, 13.94621457630747879410827536913, 15.77363084062332637638196396988, 17.02027498878412112381381838866

Graph of the $Z$-function along the critical line