Properties

Label 2-12870-1.1-c1-0-46
Degree $2$
Conductor $12870$
Sign $-1$
Analytic cond. $102.767$
Root an. cond. $10.1374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s − 11-s − 13-s − 2·14-s + 16-s + 4·17-s − 2·19-s + 20-s + 22-s + 6·23-s + 25-s + 26-s + 2·28-s + 4·29-s − 4·31-s − 32-s − 4·34-s + 2·35-s − 6·37-s + 2·38-s − 40-s − 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s − 0.301·11-s − 0.277·13-s − 0.534·14-s + 1/4·16-s + 0.970·17-s − 0.458·19-s + 0.223·20-s + 0.213·22-s + 1.25·23-s + 1/5·25-s + 0.196·26-s + 0.377·28-s + 0.742·29-s − 0.718·31-s − 0.176·32-s − 0.685·34-s + 0.338·35-s − 0.986·37-s + 0.324·38-s − 0.158·40-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12870 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12870\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(102.767\)
Root analytic conductor: \(10.1374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 12870,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.75407818988737, −16.14972463529485, −15.30018880552381, −15.03867487671892, −14.32716163016608, −13.86291461790541, −13.14836337829568, −12.38539016381716, −12.09829744653046, −11.11825753848827, −10.89167191059216, −10.14825957942059, −9.710070468423200, −8.897258483513326, −8.525557190167926, −7.745247407863826, −7.319803607184424, −6.536689981069450, −5.893024667838795, −5.033429411117244, −4.717033965971307, −3.406506194747321, −2.864844221203500, −1.799947701466223, −1.314315028062276, 0, 1.314315028062276, 1.799947701466223, 2.864844221203500, 3.406506194747321, 4.717033965971307, 5.033429411117244, 5.893024667838795, 6.536689981069450, 7.319803607184424, 7.745247407863826, 8.525557190167926, 8.897258483513326, 9.710070468423200, 10.14825957942059, 10.89167191059216, 11.11825753848827, 12.09829744653046, 12.38539016381716, 13.14836337829568, 13.86291461790541, 14.32716163016608, 15.03867487671892, 15.30018880552381, 16.14972463529485, 16.75407818988737

Graph of the $Z$-function along the critical line