Properties

Label 2-12870-1.1-c1-0-4
Degree $2$
Conductor $12870$
Sign $1$
Analytic cond. $102.767$
Root an. cond. $10.1374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 11-s − 13-s + 14-s + 16-s + 3·17-s + 19-s − 20-s + 22-s + 2·23-s + 25-s + 26-s − 28-s − 29-s − 3·31-s − 32-s − 3·34-s + 35-s + 7·37-s − 38-s + 40-s + 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s − 0.301·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.229·19-s − 0.223·20-s + 0.213·22-s + 0.417·23-s + 1/5·25-s + 0.196·26-s − 0.188·28-s − 0.185·29-s − 0.538·31-s − 0.176·32-s − 0.514·34-s + 0.169·35-s + 1.15·37-s − 0.162·38-s + 0.158·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12870 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12870\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(102.767\)
Root analytic conductor: \(10.1374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12870,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9959874503\)
\(L(\frac12)\) \(\approx\) \(0.9959874503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 3 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.32698155817147, −15.85620676221974, −15.25708941536639, −14.63873735219243, −14.24506526556146, −13.27707860507553, −12.79948546565327, −12.29860631086810, −11.53385211138605, −11.15597422498113, −10.49025940782162, −9.750865025017108, −9.490794845029796, −8.681570091659570, −8.021389879691198, −7.573625353933547, −6.961383533925640, −6.252918715809611, −5.547389897196516, −4.827426077347919, −3.925432576898583, −3.173172033082770, −2.537463406139926, −1.474746836017295, −0.5166429165382640, 0.5166429165382640, 1.474746836017295, 2.537463406139926, 3.173172033082770, 3.925432576898583, 4.827426077347919, 5.547389897196516, 6.252918715809611, 6.961383533925640, 7.573625353933547, 8.021389879691198, 8.681570091659570, 9.490794845029796, 9.750865025017108, 10.49025940782162, 11.15597422498113, 11.53385211138605, 12.29860631086810, 12.79948546565327, 13.27707860507553, 14.24506526556146, 14.63873735219243, 15.25708941536639, 15.85620676221974, 16.32698155817147

Graph of the $Z$-function along the critical line