Properties

Label 2-11-1.1-c5-0-2
Degree $2$
Conductor $11$
Sign $1$
Analytic cond. $1.76422$
Root an. cond. $1.32824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.18·2-s − 3.48·3-s + 35.0·4-s − 59.8·5-s − 28.5·6-s + 145.·7-s + 24.8·8-s − 230.·9-s − 490.·10-s + 121·11-s − 122.·12-s + 615.·13-s + 1.18e3·14-s + 208.·15-s − 917.·16-s + 1.84e3·17-s − 1.89e3·18-s + 366.·19-s − 2.09e3·20-s − 505.·21-s + 990.·22-s − 4.51e3·23-s − 86.7·24-s + 459.·25-s + 5.04e3·26-s + 1.65e3·27-s + 5.08e3·28-s + ⋯
L(s)  = 1  + 1.44·2-s − 0.223·3-s + 1.09·4-s − 1.07·5-s − 0.323·6-s + 1.11·7-s + 0.137·8-s − 0.949·9-s − 1.55·10-s + 0.301·11-s − 0.244·12-s + 1.01·13-s + 1.61·14-s + 0.239·15-s − 0.896·16-s + 1.54·17-s − 1.37·18-s + 0.232·19-s − 1.17·20-s − 0.250·21-s + 0.436·22-s − 1.78·23-s − 0.0307·24-s + 0.147·25-s + 1.46·26-s + 0.436·27-s + 1.22·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $1$
Analytic conductor: \(1.76422\)
Root analytic conductor: \(1.32824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.961193867\)
\(L(\frac12)\) \(\approx\) \(1.961193867\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - 121T \)
good2 \( 1 - 8.18T + 32T^{2} \)
3 \( 1 + 3.48T + 243T^{2} \)
5 \( 1 + 59.8T + 3.12e3T^{2} \)
7 \( 1 - 145.T + 1.68e4T^{2} \)
13 \( 1 - 615.T + 3.71e5T^{2} \)
17 \( 1 - 1.84e3T + 1.41e6T^{2} \)
19 \( 1 - 366.T + 2.47e6T^{2} \)
23 \( 1 + 4.51e3T + 6.43e6T^{2} \)
29 \( 1 + 1.71e3T + 2.05e7T^{2} \)
31 \( 1 + 2.65e3T + 2.86e7T^{2} \)
37 \( 1 - 9.66e3T + 6.93e7T^{2} \)
41 \( 1 + 1.11e4T + 1.15e8T^{2} \)
43 \( 1 - 8.36e3T + 1.47e8T^{2} \)
47 \( 1 + 2.22e3T + 2.29e8T^{2} \)
53 \( 1 - 2.37e4T + 4.18e8T^{2} \)
59 \( 1 - 1.95e4T + 7.14e8T^{2} \)
61 \( 1 - 2.09e4T + 8.44e8T^{2} \)
67 \( 1 + 5.17e4T + 1.35e9T^{2} \)
71 \( 1 + 1.39e3T + 1.80e9T^{2} \)
73 \( 1 - 7.24e4T + 2.07e9T^{2} \)
79 \( 1 - 6.46e4T + 3.07e9T^{2} \)
83 \( 1 + 9.67e4T + 3.93e9T^{2} \)
89 \( 1 + 4.76e4T + 5.58e9T^{2} \)
97 \( 1 + 3.83e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.04341950147166817255026287409, −18.18120691900491688818059213142, −16.32063530331324033958351256576, −14.88796235274301749616242188507, −13.97911494013984950872619652115, −12.04382060762040155068358098121, −11.35783285082717437751042033488, −8.097847301882656318990005265289, −5.65524928452027946393136147035, −3.83700042132674970157589138222, 3.83700042132674970157589138222, 5.65524928452027946393136147035, 8.097847301882656318990005265289, 11.35783285082717437751042033488, 12.04382060762040155068358098121, 13.97911494013984950872619652115, 14.88796235274301749616242188507, 16.32063530331324033958351256576, 18.18120691900491688818059213142, 20.04341950147166817255026287409

Graph of the $Z$-function along the critical line