Properties

Label 2-11-1.1-c5-0-1
Degree $2$
Conductor $11$
Sign $1$
Analytic cond. $1.76422$
Root an. cond. $1.32824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.20·2-s + 16.8·3-s − 27.1·4-s + 75.2·5-s + 37.1·6-s − 225.·7-s − 130.·8-s + 40.5·9-s + 166.·10-s + 121·11-s − 456.·12-s + 455.·13-s − 498.·14-s + 1.26e3·15-s + 579.·16-s + 190.·17-s + 89.5·18-s − 135.·19-s − 2.04e3·20-s − 3.79e3·21-s + 267.·22-s + 2.79e3·23-s − 2.19e3·24-s + 2.53e3·25-s + 1.00e3·26-s − 3.40e3·27-s + 6.11e3·28-s + ⋯
L(s)  = 1  + 0.390·2-s + 1.08·3-s − 0.847·4-s + 1.34·5-s + 0.421·6-s − 1.73·7-s − 0.721·8-s + 0.166·9-s + 0.525·10-s + 0.301·11-s − 0.915·12-s + 0.747·13-s − 0.679·14-s + 1.45·15-s + 0.565·16-s + 0.160·17-s + 0.0651·18-s − 0.0860·19-s − 1.14·20-s − 1.87·21-s + 0.117·22-s + 1.10·23-s − 0.779·24-s + 0.810·25-s + 0.291·26-s − 0.899·27-s + 1.47·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $1$
Analytic conductor: \(1.76422\)
Root analytic conductor: \(1.32824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.645807385\)
\(L(\frac12)\) \(\approx\) \(1.645807385\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - 121T \)
good2 \( 1 - 2.20T + 32T^{2} \)
3 \( 1 - 16.8T + 243T^{2} \)
5 \( 1 - 75.2T + 3.12e3T^{2} \)
7 \( 1 + 225.T + 1.68e4T^{2} \)
13 \( 1 - 455.T + 3.71e5T^{2} \)
17 \( 1 - 190.T + 1.41e6T^{2} \)
19 \( 1 + 135.T + 2.47e6T^{2} \)
23 \( 1 - 2.79e3T + 6.43e6T^{2} \)
29 \( 1 + 2.60e3T + 2.05e7T^{2} \)
31 \( 1 + 1.05e3T + 2.86e7T^{2} \)
37 \( 1 - 1.25e4T + 6.93e7T^{2} \)
41 \( 1 - 1.13e3T + 1.15e8T^{2} \)
43 \( 1 + 1.46e4T + 1.47e8T^{2} \)
47 \( 1 + 1.68e4T + 2.29e8T^{2} \)
53 \( 1 - 3.31e3T + 4.18e8T^{2} \)
59 \( 1 - 1.14e4T + 7.14e8T^{2} \)
61 \( 1 + 2.82e4T + 8.44e8T^{2} \)
67 \( 1 + 5.14e4T + 1.35e9T^{2} \)
71 \( 1 + 1.62e4T + 1.80e9T^{2} \)
73 \( 1 + 1.01e4T + 2.07e9T^{2} \)
79 \( 1 - 6.08e4T + 3.07e9T^{2} \)
83 \( 1 - 4.57e4T + 3.93e9T^{2} \)
89 \( 1 + 8.22e4T + 5.58e9T^{2} \)
97 \( 1 - 5.30e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.54182348511164404261224713935, −18.37338410671450228598153863535, −16.78119483762825834620605882746, −14.83242559757902066159747415911, −13.52417057545944201388601644620, −13.07491618127576319982311433708, −9.746999007057604474252975238105, −8.993526732987570460136666348473, −6.07389680191523228400090157786, −3.23172583586239099777043617004, 3.23172583586239099777043617004, 6.07389680191523228400090157786, 8.993526732987570460136666348473, 9.746999007057604474252975238105, 13.07491618127576319982311433708, 13.52417057545944201388601644620, 14.83242559757902066159747415911, 16.78119483762825834620605882746, 18.37338410671450228598153863535, 19.54182348511164404261224713935

Graph of the $Z$-function along the critical line