Properties

Label 16-18e8-1.1-c46e8-0-0
Degree $16$
Conductor $11019960576$
Sign $1$
Analytic cond. $1.14681\times 10^{19}$
Root an. cond. $15.5316$
Motivic weight $46$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.40e14·4-s + 5.49e19·7-s + 1.16e25·13-s + 1.23e28·16-s − 6.44e29·19-s + 3.60e32·25-s − 7.73e33·28-s − 8.99e33·31-s − 3.85e36·37-s − 4.32e37·43-s − 1.07e39·49-s − 1.63e39·52-s + 3.07e41·61-s − 8.71e41·64-s + 6.42e42·67-s + 2.05e43·73-s + 9.07e43·76-s + 5.05e43·79-s + 6.39e44·91-s + 6.91e45·97-s − 5.06e46·100-s − 2.65e46·103-s + 4.45e47·109-s + 6.80e47·112-s + 3.22e48·121-s + 1.26e48·124-s + 127-s + ⋯
L(s)  = 1  − 2·4-s + 2.00·7-s + 0.278·13-s + 5/2·16-s − 2.50·19-s + 2.53·25-s − 4.01·28-s − 0.449·31-s − 3.29·37-s − 1.16·43-s − 1.43·49-s − 0.557·52-s + 2.66·61-s − 5/2·64-s + 6.42·67-s + 2.85·73-s + 5.00·76-s + 1.14·79-s + 0.559·91-s + 1.39·97-s − 5.06·100-s − 1.34·103-s + 6.13·109-s + 5.02·112-s + 4.02·121-s + 0.899·124-s − 5.02·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(47-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+23)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(1.14681\times 10^{19}\)
Root analytic conductor: \(15.5316\)
Motivic weight: \(46\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{16} ,\ ( \ : [23]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{47}{2})\) \(\approx\) \(11.28634342\)
\(L(\frac12)\) \(\approx\) \(11.28634342\)
\(L(24)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{45} T^{2} )^{4} \)
3 \( 1 \)
good5 \( 1 - \)\(36\!\cdots\!92\)\( T^{2} + \)\(14\!\cdots\!36\)\( p^{5} T^{4} - \)\(37\!\cdots\!52\)\( p^{10} T^{6} + \)\(19\!\cdots\!66\)\( p^{22} T^{8} - \)\(37\!\cdots\!52\)\( p^{102} T^{10} + \)\(14\!\cdots\!36\)\( p^{189} T^{12} - \)\(36\!\cdots\!92\)\( p^{276} T^{14} + p^{368} T^{16} \)
7 \( ( 1 - 80154419535090608 p^{3} T + \)\(48\!\cdots\!04\)\( p^{3} T^{2} - \)\(88\!\cdots\!92\)\( p^{8} T^{3} + \)\(98\!\cdots\!70\)\( p^{12} T^{4} - \)\(88\!\cdots\!92\)\( p^{54} T^{5} + \)\(48\!\cdots\!04\)\( p^{95} T^{6} - 80154419535090608 p^{141} T^{7} + p^{184} T^{8} )^{2} \)
11 \( 1 - \)\(32\!\cdots\!16\)\( T^{2} + \)\(40\!\cdots\!80\)\( p^{4} T^{4} - \)\(31\!\cdots\!04\)\( p^{9} T^{6} + \)\(18\!\cdots\!74\)\( p^{14} T^{8} - \)\(31\!\cdots\!04\)\( p^{101} T^{10} + \)\(40\!\cdots\!80\)\( p^{188} T^{12} - \)\(32\!\cdots\!16\)\( p^{276} T^{14} + p^{368} T^{16} \)
13 \( ( 1 - \)\(58\!\cdots\!12\)\( T + \)\(31\!\cdots\!80\)\( p T^{2} - \)\(23\!\cdots\!56\)\( p^{3} T^{3} + \)\(16\!\cdots\!46\)\( p^{6} T^{4} - \)\(23\!\cdots\!56\)\( p^{49} T^{5} + \)\(31\!\cdots\!80\)\( p^{93} T^{6} - \)\(58\!\cdots\!12\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
17 \( 1 - \)\(98\!\cdots\!24\)\( T^{2} + \)\(56\!\cdots\!60\)\( T^{4} - \)\(63\!\cdots\!04\)\( p^{2} T^{6} + \)\(26\!\cdots\!46\)\( p^{6} T^{8} - \)\(63\!\cdots\!04\)\( p^{94} T^{10} + \)\(56\!\cdots\!60\)\( p^{184} T^{12} - \)\(98\!\cdots\!24\)\( p^{276} T^{14} + p^{368} T^{16} \)
19 \( ( 1 + \)\(16\!\cdots\!16\)\( p T + \)\(34\!\cdots\!80\)\( p^{2} T^{2} + \)\(22\!\cdots\!56\)\( p^{4} T^{3} + \)\(23\!\cdots\!94\)\( p^{6} T^{4} + \)\(22\!\cdots\!56\)\( p^{50} T^{5} + \)\(34\!\cdots\!80\)\( p^{94} T^{6} + \)\(16\!\cdots\!16\)\( p^{139} T^{7} + p^{184} T^{8} )^{2} \)
23 \( 1 - \)\(72\!\cdots\!20\)\( p T^{2} + \)\(27\!\cdots\!96\)\( p^{2} T^{4} - \)\(69\!\cdots\!40\)\( p^{3} T^{6} + \)\(14\!\cdots\!06\)\( p^{4} T^{8} - \)\(69\!\cdots\!40\)\( p^{95} T^{10} + \)\(27\!\cdots\!96\)\( p^{186} T^{12} - \)\(72\!\cdots\!20\)\( p^{277} T^{14} + p^{368} T^{16} \)
29 \( 1 - \)\(94\!\cdots\!76\)\( T^{2} + \)\(38\!\cdots\!80\)\( T^{4} - \)\(11\!\cdots\!24\)\( p^{2} T^{6} + \)\(26\!\cdots\!74\)\( p^{4} T^{8} - \)\(11\!\cdots\!24\)\( p^{94} T^{10} + \)\(38\!\cdots\!80\)\( p^{184} T^{12} - \)\(94\!\cdots\!76\)\( p^{276} T^{14} + p^{368} T^{16} \)
31 \( ( 1 + \)\(44\!\cdots\!44\)\( T + \)\(46\!\cdots\!00\)\( p T^{2} + \)\(53\!\cdots\!56\)\( p^{2} T^{3} + \)\(27\!\cdots\!34\)\( p^{3} T^{4} + \)\(53\!\cdots\!56\)\( p^{48} T^{5} + \)\(46\!\cdots\!00\)\( p^{93} T^{6} + \)\(44\!\cdots\!44\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
37 \( ( 1 + \)\(19\!\cdots\!36\)\( T + \)\(94\!\cdots\!88\)\( p^{2} T^{2} - \)\(10\!\cdots\!48\)\( p^{2} T^{3} - \)\(36\!\cdots\!10\)\( p^{3} T^{4} - \)\(10\!\cdots\!48\)\( p^{48} T^{5} + \)\(94\!\cdots\!88\)\( p^{94} T^{6} + \)\(19\!\cdots\!36\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
41 \( 1 - \)\(68\!\cdots\!76\)\( T^{2} + \)\(11\!\cdots\!40\)\( p^{2} T^{4} - \)\(11\!\cdots\!64\)\( p^{4} T^{6} + \)\(10\!\cdots\!94\)\( p^{6} T^{8} - \)\(11\!\cdots\!64\)\( p^{96} T^{10} + \)\(11\!\cdots\!40\)\( p^{186} T^{12} - \)\(68\!\cdots\!76\)\( p^{276} T^{14} + p^{368} T^{16} \)
43 \( ( 1 + \)\(50\!\cdots\!40\)\( p T + \)\(16\!\cdots\!04\)\( p^{2} T^{2} + \)\(80\!\cdots\!20\)\( p^{3} T^{3} + \)\(17\!\cdots\!06\)\( p^{4} T^{4} + \)\(80\!\cdots\!20\)\( p^{49} T^{5} + \)\(16\!\cdots\!04\)\( p^{94} T^{6} + \)\(50\!\cdots\!40\)\( p^{139} T^{7} + p^{184} T^{8} )^{2} \)
47 \( 1 - \)\(33\!\cdots\!32\)\( T^{2} + \)\(12\!\cdots\!84\)\( p T^{4} - \)\(64\!\cdots\!84\)\( T^{6} + \)\(58\!\cdots\!70\)\( T^{8} - \)\(64\!\cdots\!84\)\( p^{92} T^{10} + \)\(12\!\cdots\!84\)\( p^{185} T^{12} - \)\(33\!\cdots\!32\)\( p^{276} T^{14} + p^{368} T^{16} \)
53 \( 1 - \)\(76\!\cdots\!60\)\( T^{2} + \)\(54\!\cdots\!64\)\( T^{4} - \)\(14\!\cdots\!80\)\( T^{6} + \)\(18\!\cdots\!86\)\( T^{8} - \)\(14\!\cdots\!80\)\( p^{92} T^{10} + \)\(54\!\cdots\!64\)\( p^{184} T^{12} - \)\(76\!\cdots\!60\)\( p^{276} T^{14} + p^{368} T^{16} \)
59 \( 1 - \)\(20\!\cdots\!60\)\( T^{2} + \)\(28\!\cdots\!24\)\( T^{4} - \)\(48\!\cdots\!80\)\( T^{6} + \)\(34\!\cdots\!66\)\( T^{8} - \)\(48\!\cdots\!80\)\( p^{92} T^{10} + \)\(28\!\cdots\!24\)\( p^{184} T^{12} - \)\(20\!\cdots\!60\)\( p^{276} T^{14} + p^{368} T^{16} \)
61 \( ( 1 - \)\(15\!\cdots\!60\)\( T + \)\(52\!\cdots\!44\)\( T^{2} - \)\(54\!\cdots\!80\)\( T^{3} + \)\(10\!\cdots\!26\)\( T^{4} - \)\(54\!\cdots\!80\)\( p^{46} T^{5} + \)\(52\!\cdots\!44\)\( p^{92} T^{6} - \)\(15\!\cdots\!60\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
67 \( ( 1 - \)\(32\!\cdots\!52\)\( T + \)\(74\!\cdots\!40\)\( T^{2} - \)\(10\!\cdots\!52\)\( T^{3} + \)\(13\!\cdots\!34\)\( T^{4} - \)\(10\!\cdots\!52\)\( p^{46} T^{5} + \)\(74\!\cdots\!40\)\( p^{92} T^{6} - \)\(32\!\cdots\!52\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
71 \( 1 - \)\(33\!\cdots\!20\)\( T^{2} + \)\(91\!\cdots\!64\)\( T^{4} - \)\(18\!\cdots\!60\)\( T^{6} + \)\(30\!\cdots\!86\)\( T^{8} - \)\(18\!\cdots\!60\)\( p^{92} T^{10} + \)\(91\!\cdots\!64\)\( p^{184} T^{12} - \)\(33\!\cdots\!20\)\( p^{276} T^{14} + p^{368} T^{16} \)
73 \( ( 1 - \)\(10\!\cdots\!16\)\( T + \)\(12\!\cdots\!52\)\( T^{2} - \)\(92\!\cdots\!28\)\( T^{3} + \)\(91\!\cdots\!70\)\( T^{4} - \)\(92\!\cdots\!28\)\( p^{46} T^{5} + \)\(12\!\cdots\!52\)\( p^{92} T^{6} - \)\(10\!\cdots\!16\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
79 \( ( 1 - \)\(25\!\cdots\!76\)\( T + \)\(72\!\cdots\!00\)\( T^{2} - \)\(14\!\cdots\!24\)\( T^{3} + \)\(20\!\cdots\!14\)\( T^{4} - \)\(14\!\cdots\!24\)\( p^{46} T^{5} + \)\(72\!\cdots\!00\)\( p^{92} T^{6} - \)\(25\!\cdots\!76\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
83 \( 1 - \)\(10\!\cdots\!04\)\( T^{2} + \)\(51\!\cdots\!00\)\( T^{4} - \)\(23\!\cdots\!24\)\( p^{2} T^{6} + \)\(36\!\cdots\!34\)\( T^{8} - \)\(23\!\cdots\!24\)\( p^{94} T^{10} + \)\(51\!\cdots\!00\)\( p^{184} T^{12} - \)\(10\!\cdots\!04\)\( p^{276} T^{14} + p^{368} T^{16} \)
89 \( 1 - \)\(83\!\cdots\!40\)\( T^{2} + \)\(55\!\cdots\!84\)\( T^{4} - \)\(27\!\cdots\!20\)\( T^{6} + \)\(15\!\cdots\!46\)\( T^{8} - \)\(27\!\cdots\!20\)\( p^{92} T^{10} + \)\(55\!\cdots\!84\)\( p^{184} T^{12} - \)\(83\!\cdots\!40\)\( p^{276} T^{14} + p^{368} T^{16} \)
97 \( ( 1 - \)\(34\!\cdots\!04\)\( T + \)\(64\!\cdots\!72\)\( T^{2} - \)\(19\!\cdots\!52\)\( T^{3} + \)\(20\!\cdots\!70\)\( T^{4} - \)\(19\!\cdots\!52\)\( p^{46} T^{5} + \)\(64\!\cdots\!72\)\( p^{92} T^{6} - \)\(34\!\cdots\!04\)\( p^{138} T^{7} + p^{184} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.54701079176766549982551855149, −3.41840678189899455313646356464, −3.41246880674351665583976105361, −3.38628420621448629209539163558, −3.21109497162091663384343101060, −2.53377826220150837452319348245, −2.50181098457380270312940387228, −2.36452764388166249289933905074, −2.35343101153502566940172479886, −2.24267230042029865700597521378, −2.09546924906032673939551798380, −1.91136126407243455538636438122, −1.81444346370195904376060117783, −1.66888244296464020819013451125, −1.45539208351605054916523271375, −1.24999027268478797635613147330, −1.22246664512331654100250089523, −1.13450638955377868111881265737, −0.78649929658657519471309278610, −0.72437799735641009235735983478, −0.69181960667538650289652253420, −0.50995018840754142438846779755, −0.37444998173019020209926740041, −0.26309427848446902908801041183, −0.16175185994799297480944083751, 0.16175185994799297480944083751, 0.26309427848446902908801041183, 0.37444998173019020209926740041, 0.50995018840754142438846779755, 0.69181960667538650289652253420, 0.72437799735641009235735983478, 0.78649929658657519471309278610, 1.13450638955377868111881265737, 1.22246664512331654100250089523, 1.24999027268478797635613147330, 1.45539208351605054916523271375, 1.66888244296464020819013451125, 1.81444346370195904376060117783, 1.91136126407243455538636438122, 2.09546924906032673939551798380, 2.24267230042029865700597521378, 2.35343101153502566940172479886, 2.36452764388166249289933905074, 2.50181098457380270312940387228, 2.53377826220150837452319348245, 3.21109497162091663384343101060, 3.38628420621448629209539163558, 3.41246880674351665583976105361, 3.41840678189899455313646356464, 3.54701079176766549982551855149

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.