Properties

Label 1-4033-4033.540-r1-0-0
Degree $1$
Conductor $4033$
Sign $0.578 - 0.815i$
Analytic cond. $433.406$
Root an. cond. $433.406$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 + 0.173i)2-s + (0.993 − 0.116i)3-s + (0.939 − 0.342i)4-s + (−0.230 + 0.973i)5-s + (−0.957 + 0.286i)6-s + (−0.286 − 0.957i)7-s + (−0.866 + 0.5i)8-s + (0.973 − 0.230i)9-s + (0.0581 − 0.998i)10-s + (−0.0581 − 0.998i)11-s + (0.893 − 0.448i)12-s + (0.727 + 0.686i)13-s + (0.448 + 0.893i)14-s + (−0.116 + 0.993i)15-s + (0.766 − 0.642i)16-s + (0.984 − 0.173i)17-s + ⋯
L(s)  = 1  + (−0.984 + 0.173i)2-s + (0.993 − 0.116i)3-s + (0.939 − 0.342i)4-s + (−0.230 + 0.973i)5-s + (−0.957 + 0.286i)6-s + (−0.286 − 0.957i)7-s + (−0.866 + 0.5i)8-s + (0.973 − 0.230i)9-s + (0.0581 − 0.998i)10-s + (−0.0581 − 0.998i)11-s + (0.893 − 0.448i)12-s + (0.727 + 0.686i)13-s + (0.448 + 0.893i)14-s + (−0.116 + 0.993i)15-s + (0.766 − 0.642i)16-s + (0.984 − 0.173i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(4033\)    =    \(37 \cdot 109\)
Sign: $0.578 - 0.815i$
Analytic conductor: \(433.406\)
Root analytic conductor: \(433.406\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{4033} (540, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 4033,\ (1:\ ),\ 0.578 - 0.815i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.735827007 - 0.8969041383i\)
\(L(\frac12)\) \(\approx\) \(1.735827007 - 0.8969041383i\)
\(L(1)\) \(\approx\) \(0.9824541236 + 0.02934769300i\)
\(L(1)\) \(\approx\) \(0.9824541236 + 0.02934769300i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
109 \( 1 \)
good2 \( 1 + (-0.984 + 0.173i)T \)
3 \( 1 + (0.993 - 0.116i)T \)
5 \( 1 + (-0.230 + 0.973i)T \)
7 \( 1 + (-0.286 - 0.957i)T \)
11 \( 1 + (-0.0581 - 0.998i)T \)
13 \( 1 + (0.727 + 0.686i)T \)
17 \( 1 + (0.984 - 0.173i)T \)
19 \( 1 + (-0.866 + 0.5i)T \)
23 \( 1 + (-0.642 - 0.766i)T \)
29 \( 1 + (0.998 + 0.0581i)T \)
31 \( 1 + (-0.802 - 0.597i)T \)
41 \( 1 + (0.766 - 0.642i)T \)
43 \( 1 + (-0.642 + 0.766i)T \)
47 \( 1 + (0.686 + 0.727i)T \)
53 \( 1 + (-0.893 + 0.448i)T \)
59 \( 1 + (-0.116 + 0.993i)T \)
61 \( 1 + (0.998 + 0.0581i)T \)
67 \( 1 + (-0.835 + 0.549i)T \)
71 \( 1 + (0.173 - 0.984i)T \)
73 \( 1 + (0.835 - 0.549i)T \)
79 \( 1 + (-0.998 + 0.0581i)T \)
83 \( 1 + (0.973 + 0.230i)T \)
89 \( 1 + (0.802 - 0.597i)T \)
97 \( 1 + (-0.116 - 0.993i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.4933967846539993467795028920, −17.80812723251482042457927202230, −17.17620696521736111266653606145, −16.09862747009055800195797148651, −15.858677581993743975650107457303, −15.21471811619507364674935032667, −14.618891598539627980545479460170, −13.434116693126600004695695707048, −12.61862567488875565468494648033, −12.45621283743476152305361708710, −11.57303269314872638088247806443, −10.52638751806415047037759740956, −9.83352001773758985887700173839, −9.35292857378880393289781844985, −8.59441562259238778899776470772, −8.23844105514324174122773571353, −7.57686754801180094777407450464, −6.685536388975010990878382074139, −5.73435985506601279678377384436, −4.89841428156553375181828149832, −3.81391234311550396190036067393, −3.219489636688827910330882433799, −2.22510894886652175764672569976, −1.69845815375119105678237893464, −0.77775862030985794491650463007, 0.4221657441287151948974852299, 1.26596075787282669431600640757, 2.18065222780542873872455248630, 3.0251950459431396694079805185, 3.59450415834389058430501652253, 4.33213663261739189515030321702, 6.0719427758993363591100630265, 6.34065776740245939723762562869, 7.23563880615648768693966796561, 7.77118814236577514416656676050, 8.35974368532825013106285075950, 9.08956701546074748254839159886, 9.9293728530056562503974888572, 10.489099627931500410586334448819, 10.95765555061013048160959438206, 11.84591674086072329220551387160, 12.74284239277217217332345079721, 13.781926378463135602982376974908, 14.23194717676002455003765885110, 14.67260151099915328250444094141, 15.61550518111959745531621804290, 16.29004099145812455449133766213, 16.62301472237785576995375849816, 17.71037193482963705666585746219, 18.459449456898166226684417820000

Graph of the $Z$-function along the critical line